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To construct the complex numbers, we usually

start with the real numbers, and define the

complex numbers to be:

a+ bi, a, b ∈ R, i2 = −1 .

What happens if we try to construct “complex

complex” numbers, by taking:

z + wj, z, w ∈ C, j2 = −1 ?

This does not work very well, for we then have

(i+ j)(i− j) = i2 − j2 = (−1)− (−1) = 0 ,

so 1/(i+ j) could not exist.

But only a small modification is needed to ob-

tain a beautiful number system, the quater-

nions:

z + wj, z, w ∈ C, j2 = −1, jz = zj .

2



This might not be the definition you have seen.

Sometimes the quaternions are defined as

a+ bi+ cj + dk, a, b, c, d ∈ R,
i2 = j2 = k2 = −1,

plus several multiplication rules for i, j, and k.

That definition violates

Rule # 1 of Quaternions:

Don’t ever write k !

( just write ij )
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My own uses for quaternions involve only the

unit-length quaternions:

S3 = {z + wj | zz + ww = 1}.

The symbol S3 is used, because these quater-

nions form the 3-dimensional unit sphere in

4-dimensional space. That is, if we think of

z + wj as the complex pair (z, w) in C
2 =

R
4, the condition that zz + ww = 1 says ex-

actly that as a 4-dimensional vector, (z, w) has

length 1.

From now on, whenever we say quaternion, we

will mean a unit-length quaternion.
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Under the operation of quaternionic multiplica-

tion, S3 is a (nonabelian) group, that is, each

element has an inverse in S3. To see this, de-

fine the bar of a quaternion q = z + wj to be

q = z + wj = z − wj

This is in S3, since z z+(−w)(−w) = zz+ww =

1. We calculate

q q = (z + wj)(z − wj)
= zz − zwj + wzj − wwj2 = zz + ww = 1

that is, q is q−1. From this, we can deduce the

following property of the bar function, without

doing any additional computation:

q1q2 = (q1q2)−1 = q−1
2 q−1

1 = q2 q1 .
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S3 is in some ways analogous to the group of

S1 of unit complex numbers,

S1 = {a+ bi | a2 + b2 = 1}.

Notice that S1 can be regarded as a subgroup

of S3, it is just the quaternions of the form

z + 0 j. From the defining property of j, we

have that if z ∈ S1, then

j z j−1 = z jj−1 = z
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As a group, S3 has a rich geometric and alge-

braic structure. Today we will examine a bit

of this structure.

First, recall that two elements g and h of a

group G are conjugate if there is a group ele-

ment k so that kgk−1 = h.

We have already seen that if z ∈ S1 ⊂ S3, then

z and z are conjugate:

j z j−1 = z jj−1 = z

We will find a very easy way to determine when

any two given elements of S3 are conjugate.
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Define the real part of q = z + wj by putting

<(q) equal to <(z), the real part of the complex

number z. This makes sense, since then

(q+q)/2 = (z+wj+z−wj)/2 = (z+z)/2 = <(z)

which agrees with the usual formula <(z) =

(z + z)/2 for complex numbers.

If two quaternions are conjugate, then they

have the same real part. This is because

<(kqk) = (kqk + kqk)/2 = (kqk + kqk)/2

= k ((q + q)/2) k = kk (q + q)/2 = <(q)

where we used the fact that a real number such

as (q + q)/2 commutes with any quaternion.

With just a little more effort, one can show

that the converse is true: if two quaternions

have the same real part, then they are conju-

gate. Putting these together, we have the
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Incredibly Useful Fact: Two elements

of S3 are conjugate if and only if they have the

same real part.

Since the real part is just the first coordinate

in R4, this says that the conjugacy equivalence

classes are exactly the slices of S3 by the 3-

planes x1 = constant.

Notice that this relates algebraic structure

(conjugacy) to geometric structure (the real

part).
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We will now use the Incredibly Useful Fact
to find the conjugacy equivalence classes of

elements of S3 of finite order.

Presumably, everything we will do can be done

by direct computation, but that would violate

Rule # 2 of Quaternions:

Use structure to minimize
direct computation.
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Recall that the order of an element g of a

group G is the smallest positive n so that gn =

1, or is ∞ if no such n exists.

If two elements of a group are conjugate, they

must have the same order, since if gn = 1 then

(kgk−1)n = kgk−1 · kgk−1 · k · · · k−1 · kgk−1

= kgnk−1 = k · 1 · k−1 = 1 .
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Many elements of S3 have finite order, for ex-

ample:

−1

has order 2,

i, j, ij, and
1√
2
i+

1√
2
j

have order 4, and

1

2
+

1

2

√
1− 2 cos

(
2π

5

)
i+ cos

(
π

5

)
j

has order 6.
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Elements of order 2:

The element −1 has order 2, and it is the only
element of order 2. For suppose q has order 2.
Since −1 ≤ <(q) ≤ 1, we have <(q) = cos(θ)
for some θ. By the Incredibly Useful Fact,
q is conjugate to the element cos(θ) + sin(θ) i
of S1. The only element of order 2 in S1 is −1
(because 1 and −1 are the only complex roots
of the polynomial x2− 1), so q is conjugate to
−1, that is, q = k(−1)k = −kk = −1.

Elements of order 3:

Suppose q has order 3. By the Incredibly
Useful Fact, q is conjuate to cos(θ)+sin(θ) i,
where cos(θ) = <(q). The only elements of
order 3 in S1 are the cube roots of unity

cos
(

2π

3

)
± sin

(
2π

3

)
i = −

1

2
±
√

3

2
i

which are conjugate (same real part). So there
is only one conjugacy class of elements of order

3, the elements with real part equal to −
1

2
.
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Elements of order n:

Suppose q has order n. By the Incredibly
Useful Fact, q is conjuate to cos(θ)+sin(θ) i,

where cos(θ) = <(q). The only elements of

order n in S1 are the nth roots of unity that are

not roots of unity for a smaller power. So the

conjugacy classes of elements of order n in S3

correspond exactly to the complex conjugate

pairs of nth roots of unity that are not roots

of unity for a smaller power.

Thus, for example, there is one conjugacy class

of elements of order 4, the quaternions that are

conjugate to i, and there are two conjugacy

classes of elements of order 5, conjugate to

cos
(

2π

5

)
±sin

(
2π

5

)
i and cos

(
4π

5

)
±sin

(
4π

5

)
i

The next page is a picture of S3, showing the

elements of orders 2, 3, 4, and 5.
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