On the matrices $A B$ and $B A$

Darryl McCullough

University of Oklahoma

March 27, 2010

One of the first things we learn about matrices in linear algebra is that $A B$ need not equal $B A$.

For example,

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],
$$

but

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

So we can even have $A B \neq 0$ but $B A=0$!

How different can $A B$ and $B A$ be? Can we even write any two $n \times n$ matrices X and Y as $X=A B$ and $Y=B A$?

No, $A B$ and $B A$ cannot be just any two matrices. They must have the same determinant, where for 2×2 matrices the determinant is defined by

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c .
$$

The determinant function has the remarkable property that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

So we have

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det}(A) \operatorname{det}(B) \\
& =\operatorname{det}(B) \operatorname{det}(A) \\
& =\operatorname{det}(B A)
\end{aligned}
$$

Are there other functions f for which $f(A B)=f(B A)$?

There is another function that satisfies $f(A B)=f(B A)$ - the trace function, which is just the sum of the diagonal entries:

$$
\operatorname{tr}(A)=\operatorname{tr}\left(\left[a_{i j}\right]\right)=\sum_{i=1}^{n} a_{i i}
$$

Unlike the determinant function, one does not usually have $\operatorname{tr}(A B)=\operatorname{tr}(A) \operatorname{tr}(B)$.

But one always has $\operatorname{tr}(A B)=\operatorname{tr}(B A)$:

$$
\begin{aligned}
\operatorname{tr}(A B) & =\sum_{i=1}^{n}(A B)_{i i} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} b_{j i} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} b_{j i} a_{i j} \\
& =\sum_{j=1}^{n}(B A)_{j j} \\
& =\operatorname{tr}(B A)
\end{aligned}
$$

Are there are any other functions that satisfy $f(A B)=f(B A)$?

Of course we can generate lots of silly examples using the trace and determinant, such as

$$
f(A B)=\cos (23 \operatorname{det}(A B))-7 \operatorname{tr}(A B) .
$$

In fact, just taking polynomial expressions in trace and determinant, we can get many polynomials in the matrix entries that have this property, e. g.

$$
6 \operatorname{tr}^{2}(A) \operatorname{det}(A)=6(a+d)^{2}(a d-b c) .
$$

What we are actually wondering is:

Are there polynomials p in the matrix entries such that $p(A B)=p(B A)$, other than polynomial expressions in the trace and determinant themselves?

The answer is yes. There is a source that gives both the trace and determinant, and others as well- the characteristic polynomial:

$$
\operatorname{char}(A)=\operatorname{det}\left(\lambda I_{n}-A\right)
$$

It is a polynomial in λ, with coefficients that are are polynomials in the entries of A.

For example, for a 3×3 matrix we have

$$
\begin{gathered}
\operatorname{char}\left(\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\right) \\
=\operatorname{det}\left(\left[\begin{array}{ccc}
\lambda-a_{11} & -a_{12} & -a_{13} \\
-a_{21} & \lambda-a_{22} & -a_{23} \\
-a_{31} & -a_{32} & \lambda-a_{33}
\end{array}\right]\right) \\
=\lambda^{3}-\left(a_{11}+a_{22}+a_{33}\right) \lambda^{2} \\
+\left(a_{11} a_{22}-a_{12} a_{21}+a_{11} a_{33}\right. \\
\left.-a_{13} a_{31}+a_{22} a_{33}-a_{23} a_{32}\right) \lambda \\
-\left(a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}+a_{12} a_{23} a_{31}\right. \\
\left.-a_{12} a_{21} a_{33}+a_{13} a_{21} a_{32}-a_{12} a_{22} a_{31}\right) \\
=\lambda^{3}-\operatorname{tr}(A) \lambda^{2}+p_{2}(A) \lambda-\operatorname{det}(A)
\end{gathered}
$$

In general, for an $n \times n$ matrix we have

$$
\begin{aligned}
& \operatorname{char}(A)=\lambda^{n}-\operatorname{tr}(A) \lambda^{n-1}+p_{2}(A) \lambda^{n-2} \\
& +\cdots+(-1)^{n-1} p_{n-1}(A) \lambda+(-1)^{n} \operatorname{det}(A)
\end{aligned}
$$

for certain polynomials p_{i} in the entries of A.

We should actually write $p_{n, i}$ for these polynomials, since their formulas depend on the size n of the matrix. And we can write
$p_{n, 1}(A)=\operatorname{tr}(A)$ and $p_{n, n}(A)=\operatorname{det}(A)$.

So we wonder whether $\operatorname{char}(A B)=\operatorname{char}(B A)$. That would be the same as saying that $p_{n, i}(A B)=p_{n, i}(B A)$ for each of these polynomials.

The answer is yes:

Theorem: If A and B are $n \times n$ matrices, then $\operatorname{char}(A B)=\operatorname{char}(B A)$.

A beautiful proof of this was given in:
J. Schmid, A remark on characteristic polynomials, Am. Math. Monthly, 77 (1970), 998999.

In fact, he proved a stronger result, that becomes the theorem above if we have $m=n$:

Theorem: Let A be an $n \times m$ matrix and B an $m \times n$ matrix. Then

$$
\lambda^{m} \operatorname{char}(A B)=\lambda^{n} \operatorname{char}(B A)
$$

Theorem: Let A be an $n \times m$ matrix and B an $m \times n$ matrix. Then

$$
\lambda^{m} \operatorname{char}(A B)=\lambda^{n} \operatorname{char}(B A)
$$

proof (J. Schmid): Put

$$
C=\left[\begin{array}{cc}
\lambda I_{n} & A \\
B & I_{m}
\end{array}\right], D=\left[\begin{array}{cc}
I_{n} & 0 \\
-B & \lambda I_{m}
\end{array}\right]
$$

Then we have
$C D=\left[\begin{array}{cc}\lambda I_{n}-A B & \lambda A \\ 0 & \lambda I_{m}\end{array}\right], D C=\left[\begin{array}{cc}\lambda I_{n} & A \\ 0 & \lambda I_{m}-B A\end{array}\right]$
So

$$
\begin{aligned}
\lambda^{m} \operatorname{char}(A B) & =\operatorname{det}\left(\lambda I_{m}\right) \operatorname{det}\left(\lambda I_{n}-A B\right) \\
& =\operatorname{det}(C D) \\
& =\operatorname{det}(D C) \\
& =\operatorname{det}\left(\lambda I_{n}\right) \operatorname{det}\left(\lambda I_{m}-B A\right) \\
& =\lambda^{n} \operatorname{char}(B A)
\end{aligned}
$$

So, have we now found all the f 's with $f(A B)=$ $f(B A)$?

Yes!
Every polynomial p in the matrix entries that satisfies $p(A B)=p(B A)$ can be written as a polynomial in the $p_{n, i}$.

Consider first the case of diagonal matrices, where the entries are the eigenvalues. Any p with $p(A B)=p(B A)$ is a similarity invariant, so gives the same values if we permute the diagonal entries. Therefore it is a symmetric polynomial in the eigenvalues. The polynomials 1 , $p_{n, 1}, p_{n, 2}, \ldots, p_{n, n}$ are the elementary symmetric polynomials in the eigenvalues, so any symmetric polynomial in the eigenvalues can be written (uniquely) as a polynomial in them, say $p=P\left(1, p_{n, 1}, \ldots, p_{n, n}\right)$, on diagonal matrices. Since p is invariant under similarity, it equals P on all the set of all conjugates of diagonal matrices with distinct nonzero eigenvalues, which form an open subset of $M_{n}(\mathbb{R})=\mathbb{R}^{n^{2}}$. Since p and P are polynomials, this implies that $p=P$ on all of $M_{n}(\mathbb{R})$.

A final question: If $p_{n, i}(X)=p_{n, i}(Y)$ for all the polynomials, does this ensure that we can write $X=A B$ and $Y=B A$ for some A and B ?

No, there are easy examples that show this is not enough, such as

$$
X=I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and } Y=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

X and Y have the same trace and determinant (i. e. $p_{2,1}(X)=p_{2,1}(Y)$ and $p_{2,2}(X)=$ $p_{2,2}(Y)$), but if $A B=I$ then A and B are inverses, and $B A=I$ as well.

There are many such examples for larger n. The condition that $p_{n, i}(X)=p_{n, i}(Y)$ for all i is equivalent to X and Y having the same eigenvalues, which is much weaker than being able to write $X=A B$ and $Y=B A$ (which is equivalent to similarity when X and Y are nonsingular).

