On the matrices AB and BA

Darryl McCullough

University of Oklahoma

March 27, 2010

One of the first things we learn about matrices in linear algebra is that AB need not equal BA.

For example,

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} ,$$

but

0	1]	[1	0]		0	0]	
0	0	0	0	=	0	0	•

So we can even have $AB \neq 0$ but BA = 0!

How different can AB and BA be? Can we even write any two $n \times n$ matrices X and Y as X = AB and Y = BA? No, AB and BA cannot be just any two matrices. They must have the same determinant, where for 2×2 matrices the determinant is defined by

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc \; .$$

The determinant function has the remarkable property that det(AB) = det(A) det(B).

So we have

$$det(AB) = det(A) det(B)$$
$$= det(B) det(A)$$
$$= det(BA)$$

Are there other functions f for which f(AB) = f(BA)?

There is another function that satisfies f(AB) = f(BA)— the trace function, which is just the sum of the diagonal entries:

$$\operatorname{tr}(A) = \operatorname{tr}([a_{ij}]) = \sum_{i=1}^{n} a_{ii}$$

Unlike the determinant function, one does not usually have tr(AB) = tr(A)tr(B).

But one always has tr(AB) = tr(BA):

$$tr(AB) = \sum_{i=1}^{n} (AB)_{ii}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ji}$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ji}a_{ij}$$
$$= \sum_{j=1}^{n} (BA)_{jj}$$
$$= tr(BA)$$

Are there are any other functions that satisfy f(AB) = f(BA)?

Of course we can generate lots of silly examples using the trace and determinant, such as

$$f(AB) = \cos(23 \det(AB)) - 7 \operatorname{tr}(AB) \ .$$

In fact, just taking polynomial expressions in trace and determinant, we can get many polynomials in the matrix entries that have this property, e. g.

$$6 \operatorname{tr}^2(A) \operatorname{det}(A) = 6(a+d)^2(ad-bc)$$
.

What we are actually wondering is:

Are there polynomials p in the matrix entries such that p(AB) = p(BA), other than polynomial expressions in the trace and determinant themselves? The answer is yes. There is a source that gives both the trace and determinant, and others as well— the characteristic polynomial:

 $char(A) = det(\lambda I_n - A)$

It is a polynomial in λ , with coefficients that are are polynomials in the entries of A.

For example, for a 3×3 matrix we have

$$\operatorname{char} \left(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \right)$$
$$= \operatorname{det} \left(\begin{bmatrix} \lambda - a_{11} & -a_{12} & -a_{13} \\ -a_{21} & \lambda - a_{22} & -a_{23} \\ -a_{31} & -a_{32} & \lambda - a_{33} \end{bmatrix} \right)$$
$$= \lambda^{3} - (a_{11} + a_{22} + a_{33})\lambda^{2}$$
$$+ (a_{11}a_{22} - a_{12}a_{21} + a_{11}a_{33} \\ -a_{13}a_{31} + a_{22}a_{33} - a_{23}a_{32})\lambda$$
$$- (a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} + a_{12}a_{23}a_{31} \\ -a_{12}a_{21}a_{33} + a_{13}a_{21}a_{32} - a_{12}a_{22}a_{31})$$
$$= \lambda^{3} - \operatorname{tr}(A)\lambda^{2} + p_{2}(A)\lambda - \operatorname{det}(A)$$

In general, for an $n \times n$ matrix we have

char(A) =
$$\lambda^n - tr(A)\lambda^{n-1} + p_2(A)\lambda^{n-2}$$

+...+ (-1)ⁿ⁻¹ $p_{n-1}(A)\lambda + (-1)^n det(A)$

for certain polynomials p_i in the entries of A.

We should actually write $p_{n,i}$ for these polynomials, since their formulas depend on the size n of the matrix. And we can write $p_{n,1}(A) = tr(A)$ and $p_{n,n}(A) = det(A)$.

So we wonder whether char(AB) = char(BA). That would be the same as saying that $p_{n,i}(AB) = p_{n,i}(BA)$ for each of these polynomials. The answer is yes:

Theorem: If A and B are $n \times n$ matrices, then char(AB) = char(BA).

A beautiful proof of this was given in:

J. Schmid, A remark on characteristic polynomials, *Am. Math. Monthly*, 77 (1970), 998-999.

In fact, he proved a stronger result, that becomes the theorem above if we have m = n:

Theorem: Let A be an $n \times m$ matrix and B an $m \times n$ matrix. Then

$$\lambda^m \operatorname{char}(AB) = \lambda^n \operatorname{char}(BA)$$

Theorem: Let A be an $n \times m$ matrix and B an $m \times n$ matrix. Then

$$\lambda^m \operatorname{char}(AB) = \lambda^n \operatorname{char}(BA)$$

proof (J. Schmid): Put

$$C = \begin{bmatrix} \lambda I_n & A \\ B & I_m \end{bmatrix}, D = \begin{bmatrix} I_n & 0 \\ -B & \lambda I_m \end{bmatrix}$$

Then we have

$$CD = \begin{bmatrix} \lambda I_n - AB & \lambda A \\ 0 & \lambda I_m \end{bmatrix}, DC = \begin{bmatrix} \lambda I_n & A \\ 0 & \lambda I_m - BA \end{bmatrix}$$
So

$$\lambda^{m} \operatorname{char}(AB) = \det(\lambda I_{m}) \det(\lambda I_{n} - AB)$$
$$= \det(CD)$$
$$= \det(DC)$$
$$= \det(\lambda I_{n}) \det(\lambda I_{m} - BA)$$
$$= \lambda^{n} \operatorname{char}(BA)$$

So, have we now found all the f's with f(AB) = f(BA)?

Yes!

Every polynomial p in the matrix entries that satisfies p(AB) = p(BA) can be written as a polynomial in the $p_{n,i}$.

Consider first the case of diagonal matrices, where the entries are the eigenvalues. Any p with p(AB) = p(BA) is a similarity invariant, so gives the same values if we permute the diagonal entries. Therefore it is a symmetric polynomial in the eigenvalues. The polynomials 1, $p_{n,1}, p_{n,2}, \ldots, p_{n,n}$ are the elementary symmetric polynomials in the eigenvalues, so any symmetric polynomial in the eigenvalues can be written (uniquely) as a polynomial in them, say $p = P(1, p_{n,1}, \ldots, p_{n,n})$, on diagonal matrices. Since p is invariant under similarity, it equals P on all the set of all conjugates of diagonal matrices with distinct nonzero eigenvalues, which form an open subset of $M_n(\mathbb{R}) = \mathbb{R}^{n^2}$. Since p and P are polynomials, this implies that p = P on all of $M_n(\mathbb{R})$.

A final question: If $p_{n,i}(X) = p_{n,i}(Y)$ for all the polynomials, does this ensure that we can write X = AB and Y = BA for some A and B?

No, there are easy examples that show this is not enough, such as

$$X = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ and } Y = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

X and Y have the same trace and determinant (i. e. $p_{2,1}(X) = p_{2,1}(Y)$ and $p_{2,2}(X) = p_{2,2}(Y)$), but if AB = I then A and B are inverses, and BA = I as well.

There are many such examples for larger n. The condition that $p_{n,i}(X) = p_{n,i}(Y)$ for all i is equivalent to X and Y having the same eigenvalues, which is much weaker than being able to write X = AB and Y = BA (which is equivalent to similarity when X and Y are nonsingular).