
A sample of Rota’s mathematics

How can we define the real numbers R, once we have
defined the integers Z?

Standard constructions, such as Dedekind cuts and equiva-
lence classes of Cauchy sequences, are based on a two-step,
geometric approach:

(1) Construct the rational numbers Q.
(2) Fill in the “missing points of the line” to get R.

There is nothing wrong with using geometric thinking (quite
the contrary), but it is reasonable to ask whether there is
a way to construct R from Z without using any geometric
notions. Also, is it possible to avoid passing first to Q?

The answers are “yes” and “yes.” An elegant, purely al-
gebraic construction that bypasses Q was given in a paper
written by Rota and three other mathematicians:

F. Faltin, N. Metropolis, B. Ross, G.-C. Rota, The
real numbers as a wreath product, Advances in
Math. 16 (1975), 278–304.

It is based on the natural idea of just regarding the real
numbers as infinite decimals, but as we will see, there is a
major difficulty to be surmounted.
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What happens when we try to use the model of decimal
numbers, or to make it simpler, base-2 numbers? A real
number should be represented by a doubly-infinite string

A = · · · (a−n) · · · (a−2)(a−1)a0 · a1a2a3 · · ·

where

(1) For some N , ai = 0 whenever i < N . That is, the
string starts with infinitely many 0’s.

(2) Each ai ∈ {0, 1}, except that the first nonzero ai

might be −1.

So for example, we have

· · · 0000101 · 11001000000000000000000 · · ·
· · · 0000000 · 00001010011000110000110 · · ·

These would represent the real numbers in the usual way.
For example, the first one above, which has 1 = a−2 =
a0 = a1 = a2 = a5 and all other ai = 0, would represent

(1× 22) + (1× 20) + (1× 1

2
) + (1× 1

22
) + (1× 1

25
) .

In general,

[· · · (a−n) · · · (a−2)(a−1)a0 · a1a2a3 · · · ]
would represent the real number∑ ai

2i
.
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Also, we declare

· · · ak−1ak01111111111111111111111 · · ·
to be equivalent to

· · · ak−1ak10000000000000000000000 · · ·
since these should represent the same real number.

The set of equivalence classes would indeed be R, and
sending

[· · · (a−n) · · · (a−2)(a−1)a0 · a1a2a3 · · · ]
to ∑ ai

2i

would be a one-to-one correspondence with the real num-
bers produced by other constructions.

So what’s the problem?
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The problem: You must use your new description to define
all the usual operations and other structures in R, and
verify their properties.

And when you define the operations, especially multiplica-
tion, you have to do a lot of carrying.

For example,

[· · · 0a0 · a1a2a3 · · · ] [· · · 0b0 · b1b2b3 · · · ] =

[· · · 0(a0b0) · (a0b1 + a1b0) (a0b2 + a1b1 + a2b0)

(a0b3 + a1b2 + a2b1 + a3b0) · · · ]
This product must now be simplified using carrying, per-
haps requiring infinitely many carries.

But if you are allowed to do infinitely many carries, you
can change any string to the zero string (and hence to any
other string). For example:

1 · 00000 · · · ∼ 0 · 200000 · · ·
∼ 0 · 040000 · · ·
∼ 0 · 008000 · · ·
∼ 0 · 000(16)00 · · ·
∼ 0 · 0000(32)0 · · ·
∼ · · ·
∼ 0 · 000000 · · ·

How can we manage to do enough carrying, but not too
much?
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First, we use the time-honored technique of postponing the
major difficulty, by working (for a while) with nonsimplified
products:

Consider all infinite strings as above, but where ai is al-
lowed to be any integer. We still think in base 2, so for
example

· · · 003 · 7(−4)000 · · ·
corresponds to the real number

(3× 20) + (7× 1

2
) + ((−4)× 1

22
) = “five-and-a-half”

(Keep in mind that we haven’t defined R yet, so this is only
our secret intuition of what · · · 003 ·7(−4)000 · · · means.)

We say that · · · a−2a−1a0 · a1a2a3 · · · is bounded when∑ ai

2i
is absolutely convergent. This will ensure that it

represents a real number.

Technical point: In the paper, all definitions and arguments
are written using only integers, so that it is never necessary
to introduce rational numbers. For example,∑ ai

2i
is absolutely convergent

becomes

there exists N so that

for every n,
∑

i≤n |ai| 2n−i ≤ 2nN
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What we need to do now is to define two bounded strings
of integers to be “equivalent” in such a way that equivalent
strings will correspond to the same real number.

Define K to be the infinite string · · · 0001·(−2)0000, which
secretly represents (1× 20) + ((−2)× 1

2) = “zero”.

Notice that adding K to A corresponds to doing a carry
at the 1’s place:

(· · · 0a0 · a1a2a3 · · · ) + (· · · 01 · (−2)0 · · · )
= · · · 0(a0 + 1) · (a1 − 2)a2a3 · · ·

Since

K [· · · 000 · 1000 · · · ] = · · · 000 · 1(−2)00 · · · ,

adding K [· · · 000 · 1000 · · · ] to a string has the effect of
doing a carry in the halves place. In general, adding K C
to B, for some integer string C, has the effect of doing a
bunch of carries to B.

Now, define A to be equivalent to B when there exists a
carry string C so that

A = B + K C
where C = · · · c−1c0 · c1c2 · · · is a carry string when

(1) K C is bounded, and

(2) lim
n→∞

cn

2n
= 0.
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A couple of examples should convince you that this def-
inition of equivalence is at least a reasonable attempt to
allow the right amount of carrying.

First,
· · · 0001 · 0000 · · · ∼ · · · 0000 · 1111 ,

since

(· · · 0001 · 0000 · · · ) =

(· · · 0000 · 1111) + K (· · · 0001 · 1111 · · · )

with · · · 0001 · 1111 · · · a carry string since
lim cn

2n = lim 1
2n = 0.

On the other hand,

· · · 0001 · 0000 · · · 6∼ · · · 0000 · 0000 .

We do have

(· · · 0001 · 0000 · · · ) =

(· · · 0000 · 0000) + K (· · · 0001 · 248(16)(32) · · · )

but · · · 0001 · 248(16)(32) · · · is not a carry string since
lim cn

2n = lim 2n

2n = 1 6= 0.
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Confirmation that this is the correct amount of carrying to
allow comes when the authors prove the following theorem:

Theorem. Every bounded string is equivalent to a
unique “clear string,” i. e. a string in which:

(1) The first nonzero digit is 1 or −1.
(2) All later digits are either 1 or 0.
(3) The string does not end in all 1’s

( 0111 · · · ∼ 1000 · · · )
(4) If the first digit is −1, then the next one is 0

( (−1)1 ∼ 0(−1) )

So the equivalence classes do correspond to the base-2
decimals that we originally wanted to use in our definition.

Rota and his coauthors check that the operations

A + B = C where ci = ai + bi

and
A B = C where ci =

∑
anbi−n

are well-defined and have all the usual properties, and that
sending · · · a−1a0 · a1a2 · · · to

∑
ai2

−i really does define
an isomorphism of fields to the real numbers as they are
traditionally defined. The new definition works!

(A tricky point when defining division is that the multi-
plicative inverse of a bounded string need not be bounded.
But the multiplicative inverse of a clear string is bounded,
so can be used to define the multiplicative inverse.)
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So what have we learned?

The real numbers can be constructed without invoking
geometric thinking, and without first constructing the ra-
tional numbers. We can use a decimal-type representation,
but we have to be careful to allow just the right amount
of carrying.

This may or may not be the best way to think of the
real numbers in most contexts, but it gives us a deeper
understanding of the real numbers and their relation to Z
and Q.

This is very much in keeping with Rota’s thinking that
mathematics is not just a quest to solve problems, it is
also a quest to understand the mathematical universe as
clearly and as deeply as possible.

For algebraists: How can you construct the p-adics?

Answer: Take K = · · · 000p · (−1)000 · · · .
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