Problem 1: Determine whether the following equation defines y as a function of x: $y + x^2 = -10$

Problem 2: Evaluate the difference quotient $\frac{f(x + h) - f(x)}{h}$ for the function $f(x) = x^2 + 3x - 4$

Problem 3: Evaluate the piecewise function at the given values:

\[f(x) = \begin{cases}
\sqrt{x + 6} & \text{if } x \geq -6 \\
\sqrt{6 - x} & \text{if } x < -6
\end{cases} \]

a. $f(-6)$

b. $f(-10)$
Problem 4: Find the domain of the following functions:

a. \(h(x) = \frac{-3x}{x^2 + 6x + 8} \)

b. \(f(x) = \frac{5}{\sqrt{x + 4}} \)

Problem 5: Graph the following function by plotting points using the given values for \(x \). Be sure to use an appropriate scale on the graph.

\[f(x) = x^2 + 2 \quad x = -2, -1, 0, 1, 2 \]

\[f(-2) = \quad f(-1) = \quad f(0) = \quad f(1) = \quad f(2) = \]

\[
\begin{array}{c|c|c|c|c|c}
\hline
x & -2 & -1 & 0 & 1 & 2 \\
\hline
y & _ & _ & _ & _ & _ \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c}
\hline
x & -2 & -1 & 0 & 1 & 2 \\
\hline
y & _ & _ & _ & _ & _ \\
\hline
\end{array}
\]
Problem 6: Use the following graph to find the domain, range, x-intercepts (if any), and y-intercepts (if any). Write the domain and range in interval notation.

![Graph](image)

Domain: _______________ Range: _______________

x -intercepts: _______________ y -intercept: _______________

Problem 7: Use the vertical line test to identify graphs in which y is a function of x. Write “function” or “not a function” below each graph.

![Graphs](image)

Problem 8: Use the graph to determine intervals on which the function is increasing, decreasing, or constant (if any). Write the answers in interval notation.

![Graph](image)

Increasing: _____________________________

Decreasing: _____________________________

Constant: _____________________________
Problem 9: Use the graph to write the coordinates of the relative and absolute maxima and minima (if any).

Absolute Maxima:__________________________
Relative Maxima:__________________________
Absolute Minima:__________________________
Relative Minima:__________________________

Problem 10: Determine whether the following function is even, odd, or neither: $f(x) = x^2 \sqrt{x^2 + 5}$

Problem 11: Use possible symmetry to determine whether each graph is the graph of an even function, an odd function, or a function that is neither even nor odd. Write either “even”, “odd”, or “neither” below each graph.
Problem 12: Find the average rate of change of \(f(x) = \sqrt{x - 8} \) from \(x_1 = 9 \) to \(x_2 = 24 \).

Problem 13: Find the value of the given function combination or composition:

a. If \(f(x) = 4x^2 + x - 6 \) and \(g(x) = x^2 - 2 \), find \((f - g)(3)\):

b. For \(f(x) = -x \) and \(g(x) = 7x + 1 \), find \((f \circ g)(4)\):

Problem 14: Find \((\frac{f}{g})(x)\) for \(f(x) = \sqrt{x + 1} \) and \(g(x) = x - 1 \) and determine its domain:
Problem 15: For \(f(x) = \frac{x}{x+1} \), \(g(x) = \frac{4}{x} \), find \((f \circ g) \) and its domain. Simplify all answers.

Problem 16: Find an equation for the inverse function, \(f^{-1}(x) \), of \(f(x) = \frac{x - 2}{2x + 1} \).

Problem 17: Determine whether each pair of functions \(f \) and \(g \) are inverses of each other.

a. \(f(x) = 2x - 1 \) and \(g(x) = \frac{x + 1}{2} \)

b. \(f(x) = \sqrt[3]{x - 4} \) and \(g(x) = x^3 + 4 \)
Problem 18: Determine which of the following graphs represent functions that have an inverse (i.e., are one-one functions). Write “has an inverse” or “no inverse” underneath each graph.

![Graphs](Image)

Problem 19: Use the graph of the given function to draw the graph of its inverse function.

![Graph](Image)