\qquad

Honors Calculus I [1823-001] Midterm I

Monday, September 25, 2000
For full credit, give reasons for all your answers.

Q1]...[8 points] Evaluate the following limits, showing all your work. What is the geometrical significance of these limits (if there is any!)?

$$
\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x}
$$

We begin by rationalizing the numerator, using the expression for the difference of two squares $(a-b)(a+b)=$ $a^{2}-b^{2}$.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x} & =\lim _{x \rightarrow 0}\left(\frac{\sqrt{2+x}-\sqrt{2}}{x}\right)\left(\frac{\sqrt{2+x}+\sqrt{2}}{\sqrt{2+x}+\sqrt{2}}\right) \\
& =\lim _{x \rightarrow 0} \frac{2+x-2}{x(\sqrt{2+x}+\sqrt{2})} \\
& =\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{2+x}+\sqrt{2})} \\
& =\lim _{x \rightarrow 0} \frac{1}{\sqrt{2+x}+\sqrt{2}} \quad \text { since } x \neq 0 \\
& =\frac{1}{\sqrt{2}+\sqrt{2}}=\frac{1}{2 \sqrt{2}}
\end{aligned}
$$

The geometric significance of this limit is that it is the slope of the tangent line to the graph of $y=\sqrt{x}$ at the point $(2, \sqrt{2})$.

$$
\lim _{x \rightarrow 0} \frac{\sqrt[3]{2+x}-\sqrt[3]{2}}{x}
$$

We begin by rationalizing the numerator, now using the expression for the difference of two cubes $(a-b)\left(a^{2}+\right.$ $\left.a b+b^{2}\right)=a^{3}-b^{3}$.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt[3]{2+x}-\sqrt[3]{2}}{x} & =\lim _{x \rightarrow 0}\left(\frac{\sqrt[3]{2+x}-\sqrt[3]{2}}{x}\right)\left(\frac{(2+x)^{2 / 3}+(2+x)^{1 / 3} 2^{1 / 3}+2^{2 / 3}}{(2+x)^{2 / 3}+(2+x)^{1 / 3} 2^{1 / 3}+2^{2 / 3}}\right) \\
& =\lim _{x \rightarrow 0} \frac{2+x-2}{x\left((2+x)^{2 / 3}+(2+x)^{1 / 3} 2^{1 / 3}+2^{2 / 3}\right)} \\
& =\lim _{x \rightarrow 0} \frac{x}{x\left(\left((2+x)^{2 / 3}+(2+x)^{1 / 3} 2^{1 / 3}+2^{2 / 3}\right)\right.} \\
& =\lim _{x \rightarrow 0} \frac{1}{(2+x)^{2 / 3}+(2+x)^{1 / 3} 2^{1 / 3}+2^{2 / 3}} \quad \text { since } x \neq 0 \\
& =\frac{1}{2^{2 / 3}+2^{2 / 3}+2^{2 / 3}}=\frac{1}{3\left(2^{2 / 3}\right)}
\end{aligned}
$$

The geometric significance of this limit is that it is the slope of the tangent line to the graph of $y=\sqrt[3]{x}$ at the point $(2, \sqrt[3]{2})$.

Q2]...[15 points] Write down (no explanations necessary) the following limits that we encountered in class.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \cos x=1 \\
& \lim _{x \rightarrow 0} \sin x=0 \\
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=1
\end{aligned}
$$

Use the limits above to compute the values of the following limits.

$$
\lim _{x \rightarrow 0} \tan x
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \tan x=\lim _{x \rightarrow 0} \frac{\sin x}{\cos x} \\
&=\frac{\lim _{x \rightarrow 0} \sin x}{\lim _{x \rightarrow 0} \cos x} \\
&=\frac{0}{1}=0 \\
& \lim _{x \rightarrow 0} \frac{\tan x}{x}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan x}{x} & =\lim _{x \rightarrow 0} \frac{\sin x}{x \cos x} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{x} \lim _{x \rightarrow 0} \frac{1}{\cos x} \\
& =1 \cdot \frac{1}{1}=1 \\
& \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}
\end{aligned}
$$

Hint: multiply by $\frac{1+\cos x}{1+\cos x}$ and see what happens.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} & =\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x^{2}}\right)\left(\frac{1+\cos x}{1+\cos x}\right) \\
& =\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x^{2}(1+\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2}(1+\cos x)} \\
& =\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2} \lim _{x \rightarrow 0} \frac{1}{(1+\cos x)} \\
& =1^{2} \frac{1}{1+1}=\frac{1}{2}
\end{aligned}
$$

Q3]...[7 points] State the Intermediate Value Theorem (IVT).
Suppose $f(x)$ is a continuous function which is defined on the interval $[a, b]$, and suppose that N is a number between $f(a)$ and $f(b)$. Then there is a number c between a and b such that $f(c)=N$.

Use the IVT to show that there is a real number input for which the functions

$$
f(x)=x^{3}-4 x^{2}+2 x+1
$$

and

$$
g(x)=2 x^{2}-x^{3}-1
$$

have the same output.
Note that f and g will have the same output if and only if the the difference

$$
h(x)=f(x)-g(x)=2 x^{3}-6 x^{2}+2 x+2
$$

has a real root.
But h is continuous (cubic polynomial) and $h(0)=2>0$, and h tends to minus infinity as x gets large and negative. In particular, $h(-1)=-8<0$ so the IVT tells us that there is a root between -1 and 0 .

Note: you may have accidentally stumbled on another root (namely 1) in answering this question!

Q4]...[15 points] Say whether the following statements are true (T), or false (F). Support your answers by giving reasons or examples where appropriate.

- The sum of two rational numbers is a rational number.

True. In fact $p / q=r / s=(p s+q r) / q s$ which is clearly rational.

- The sum of two irrational numbers is an irrational number.

False. For example $\sqrt{2}$ and $-\sqrt{2}$ are two irrational numbers, yet their sum is the rational number 0 . [Likewise you can try $\sqrt{2}$ and $1-\sqrt{2}$ whose sum is the rational number 1]

- The sum of a rational and an irrational number is an irrational number.

True. If $p / q+\alpha$ were rational, then we could write $p / q+\alpha=r / s$ and rearrange to get $\alpha=r / s-p / q=$ $(r q-p s) / q s$ which is rational, thus contradicting the irrationality of α.

- If $\lim _{x \rightarrow 0} f(x)$ does not exist and $\lim _{x \rightarrow 0} g(x)$ does not exist, then $\lim _{x \rightarrow 0} f(x)+g(x)$ must not exist.

False. We have seen in class that if $f(x)$ is defined to be 1 for $x \leq 0$ and to be 0 for $x>0$, and $g(x)$ is defined to be 0 for $x \leq 0$ and to be 1 for $x>0$, then neither $\lim _{x \rightarrow 0} f(x)$ not $\lim _{x \rightarrow 0} g(x)$ exists. However, $f(x)+g(x)=1$ for all values of x and so $\lim _{x \rightarrow 0}(f(x)+g(x))=\lim _{x \rightarrow 0} 1=1$.

- If $\lim _{x \rightarrow 0} f(x)=7$ then there is a number $\delta>0$ such that $6<f(x)<8$ whenever $0<|x|<\delta$.

True. This follows from the formal definition of a limit when we take the output tolerance ϵ to be the number 1.

