Q1]... [13 points] Use logarithmic differentiation to compute the derivative $f^{\prime}(x)$ of the following function

$$
f(x)=x^{\sqrt{x}}
$$

Take logs of the equation $y=x^{\sqrt{x}}$ to get $\ln y=\ln \left(x^{\sqrt{x}}\right)=\sqrt{x} \ln (x)$. Differentiate this expression with respect to x to get

$$
\frac{1}{y} y^{\prime}=\frac{1}{2} x^{-1 / 2} \ln (x)+\sqrt{x} \frac{1}{x}=\frac{\ln (x)+2}{2 \sqrt{x}} .
$$

Thus,

$$
y^{\prime}=x^{\sqrt{x}} \frac{(\ln (x)+2)}{2 \sqrt{x}}
$$

Compute the second derivative $g^{\prime \prime}(x)$ of the following function

$$
g(x)=\int_{1}^{x} \ln (t+1) d t
$$

By the Fundamental Theorem of Calculus we have

$$
g^{\prime}(x)=\ln (x+1)
$$

and differentiating this again gives

$$
g^{\prime \prime}(x)=\frac{1}{x+1}
$$

Q2]. . . [13 points] Write down the "cylindrical shell method" formula for the volume obtained by rotating the region R about the y-axis. Here R is the region below the graph $y=f(x)$ between $x=a$ and $x=b$.

$$
V=2 \pi \int_{a}^{b} x f(x) d x
$$

Compute the volume obtained by rotating the region R about the y-axis. R is the region bounded by the graph $y=1 /\left(x \sqrt{1-x^{2}}\right)$, the x-axis, and the lines $x=1 / 2$ and $x=\sqrt{3} / 2$.

$$
V=2 \pi \int_{1 / 2}^{\sqrt{3} / 2} \frac{x}{x \sqrt{1-x^{2}}} d x=2 \pi \int_{1 / 2}^{\sqrt{3} / 2} \frac{d x}{\sqrt{1-x^{2}}}=\left.2 \pi \sin ^{-1}(x)\right|_{1 / 2} ^{\sqrt{3} / 2}
$$

Since $\sin ^{-1}(\sqrt{3} / 2)=\pi / 3$ and $\sin ^{-1}(1 / 2)=\pi / 6$ we get $V=2 \pi(\pi / 6)=3 \pi^{2}$.

Q3]... [12 points] Evaluate the following indefinite integrals.

$$
\int \frac{x d x}{1+x^{2}}
$$

Let $u=1+x^{2}$, so that $d u=2 x d x$. The integral becomes (by the method of substitution)

$$
\begin{gathered}
\frac{1}{2} \int \frac{d u}{u}=\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln \left(1+x^{2}\right)+C . \\
\int \frac{x d x}{1+x^{4}}
\end{gathered}
$$

Let $u=x^{2}$ so that $d u=2 x d x$ and the integral becomes (by substitution)

$$
\frac{1}{2} \int \frac{d u}{1+u^{2}}=\frac{1}{2} \tan ^{-1}(u)+C=\frac{1}{2} \tan ^{-1}\left(x^{2}\right)+C .
$$

Q4]...[12 points] A bucket is raised vertically from the ground at a speed of $2 \mathrm{~m} / \mathrm{min}$ using a rope of negligible weight (ignore the weight of the rope in your calculations). The bucket weighs 1 kg , and is filled with 15 kg of water at the start. As it is being pulled up, the bucket leaks water at a constant rate of 1 kg per minute. Write down an integral for the work done in raising the leaking bucket to a height of 10 m . Show how you arrived at your answer. You do not need to evaluate the integral.

Let t denote time (in minutes). Total time is $10 / 2=5$ minutes. At time t the mass of the bucket is $(1+15)-1 t \mathrm{~kg}$, or simply $(16-t) \mathrm{kg}$.

Divide the time interval into n equal width subintervals. During the time interval from t_{i-1} to t_{i} we can take t_{i}^{*} as the approximate time. The mass of the bucket is $16-t_{i}^{*} \mathrm{~kg}$. Gravity exerts a force of $\left(16-t_{i}^{*}\right) g$ Newtons on the bucket of water during this time. Here g is the acceleration due to gravity on the earth's surface. This mass is moved a distance of $2 \Delta t \mathrm{~m}$ during this interval.

Thus the approximate work done during this interval is simply the product ($\left.16-t_{i}^{*}\right) g(2 \Delta t)$. Adding all these contributions to work done gives a sum

$$
\sum_{i=1}^{n}\left(16-t_{i}^{*}\right) g(2 \Delta t)
$$

Taking the limit as $n \rightarrow \infty$ gives an exact expression for the work done; namely

$$
W=\int_{0}^{5}(16-t) g 2 d t=2 g \int_{0}^{5}(16-t) d t
$$

Note, if you worked with displacement x instead of time t you would get the integral

$$
W=g \int_{0}^{10}(16-x / 2) d x
$$

If you had to evaluate these integrals, you would use a numerical value for g, the acceleration due to gravity. This is usually $9.8 \mathrm{~m} / \mathrm{s}^{2}$. However, since our problem is stated in minutes instead of seconds, you would convert $9.8 \mathrm{~m} / \mathrm{s}^{2}$ to $9.8(60)^{2} \mathrm{~m} / \mathrm{min}^{2}$, and use $g=9.8(60)^{2}$. You might use a different number if this bucket of water were being raised on the surface of a different planet.

