## Problem 1.

Let $D$ be a subset of $\mathbb{R}^{2}$ defined in polar coordinates as

$$
D=\{(r, \theta): \theta \in[a, b], g(\theta) \leq r \leq f(\theta)\},
$$

where $a$ and $b$ are constants with $0 \leq a<b \leq 2 \pi$, and $g:[a, b] \rightarrow \mathbb{R}$ and $f:[a, b] \rightarrow \mathbb{R}$ are functions satisfying $g(\theta) \leq f(\theta)$ for all $\theta \in[a, b]$ (see Figure 6 on page 691 for a picture of such a domain).
(a) Use double integral in polar coordinates to show that the area of $D$ is equal to

$$
\frac{1}{2} \int_{a}^{b}\left[f(\theta)^{2}-g(\theta)^{2}\right] \mathrm{d} \theta .
$$

(b) Use the formula from part (a) to find the area inside the curve with equation in polar coordinates is $r=1+\cos \theta$; this curve is called a cardioid and is drawn in the figure below. (You may find useful the fact that $\int_{0}^{\pi / 2} \cos ^{2} \theta \mathrm{~d} \theta=\frac{\pi}{4}$.)


## Problem 2.

Let $a$ and $b$ be constants with $a<b$, and let $f:[a, b] \rightarrow[0, \infty)$ be a function taking only nonnegative values. Consider the curve $y=f(z)$ for $z \in[a, b]$ in the $(y, z)$-plane in $\mathbb{R}^{3}$ (i.e., the points with Cartesian coordinates $(0, f(z), z)$, where $z \in[a, b])$. Rotate this curve around the $z$-axis to obtain a solid of revolution (see page 357) defined by

$$
E=\left\{(x, y, z) \in \mathbb{R}^{3}: z \in[a, b], \sqrt{x^{2}+y^{2}} \leq f(z)\right\} .
$$

(a) Use triple integral in cylindrical coordinates to show that the volume of $E$ is equal to

$$
\int_{a}^{b} \pi f(z)^{2} \mathrm{~d} z
$$

(b) Use the formula derived in part (a) to compute the volume of a ball of radius $R$.

