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Honors Calculus I [1823-001] Midterm I
Monday, September 25, 2000

For full credit, give reasons for all your answers.

Q1]...[8 points] Evaluate the following limits, showing all your work. What is the geometrical significance of
these limits (if there is any!)?

lim
x→0

√
2 + x−

√
2

x

We begin by rationalizing the numerator, using the expression for the difference of two squares (a − b)(a + b) =
a2 − b2.
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The geometric significance of this limit is that it is the slope of the tangent line to the graph of y =
√
x at the

point (2,
√

2).
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We begin by rationalizing the numerator, now using the expression for the difference of two cubes (a− b)(a2 +
ab+ b2) = a3 − b3.
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The geometric significance of this limit is that it is the slope of the tangent line to the graph of y = 3
√
x at the

point (2, 3
√

2).



Q2]...[15 points] Write down (no explanations necessary) the following limits that we encountered in class.
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Use the limits above to compute the values of the following limits.
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Hint: multiply by 1+cos x
1+cos x and see what happens.
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Q3]...[7 points] State the Intermediate Value Theorem (IVT).

Suppose f(x) is a continuous function which is defined on the interval [a, b], and suppose that N is a number
between f(a) and f(b). Then there is a number c between a and b such that f(c) = N .

Use the IVT to show that there is a real number input for which the functions

f(x) = x3 − 4x2 + 2x+ 1

and
g(x) = 2x2 − x3 − 1

have the same output.

Note that f and g will have the same output if and only if the the difference

h(x) = f(x)− g(x) = 2x3 − 6x2 + 2x+ 2

has a real root.
But h is continuous (cubic polynomial) and h(0) = 2 > 0, and h tends to minus infinity as x gets large and

negative. In particular, h(−1) = −8 < 0 so the IVT tells us that there is a root between -1 and 0.
Note: you may have accidentally stumbled on another root (namely 1) in answering this question!



Q4]...[15 points] Say whether the following statements are true (T), or false (F). Support your answers by giving
reasons or examples where appropriate.

• The sum of two rational numbers is a rational number.

True. In fact p/q = r/s = (ps+ qr)/qs which is clearly rational.

• The sum of two irrational numbers is an irrational number.

False. For example
√

2 and −
√

2 are two irrational numbers, yet their sum is the rational number 0. [Likewise
you can try

√
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√
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• The sum of a rational and an irrational number is an irrational number.

True. If p/q + α were rational, then we could write p/q + α = r/s and rearrange to get α = r/s − p/q =
(rq − ps)/qs which is rational, thus contradicting the irrationality of α.

• If limx→0 f(x) does not exist and limx→0 g(x) does not exist, then limx→0 f(x) + g(x) must not exist.

False. We have seen in class that if f(x) is defined to be 1 for x ≤ 0 and to be 0 for x > 0, and g(x) is
defined to be 0 for x ≤ 0 and to be 1 for x > 0, then neither limx→0 f(x) not limx→0 g(x) exists. However,
f(x) + g(x) = 1 for all values of x and so limx→0(f(x) + g(x)) = limx→0 1 = 1.

• If limx→0 f(x) = 7 then there is a number δ > 0 such that 6 < f(x) < 8 whenever 0 < |x| < δ.

True. This follows from the formal definition of a limit when we take the output tolerance ε to be the number
1.


