Calculus I [1823-001] Quiz I

Q1]... Find the absolute maximum and absolute minimum values of the function

$$
f(x)=\sqrt{8-x^{2}+2 x}
$$

on the interval $[0,3]$.
Solution. We have two endpoints: 0 and 3 .
The critical points are found by solving $f^{\prime}=0$ or finding where f^{\prime} doesn't exist. Well,

$$
f^{\prime}(x)=\frac{-2 x+2}{2 \sqrt{8-x^{2}+2 x}}=-\frac{x-1}{\sqrt{8-x^{2}+2 x}}
$$

Note that $f^{\prime}(x)$ is defined everywhere on the interval $[0,3]$, so the critical points will be where $f^{\prime}=0$. Now, $f^{\prime}=0$ only when the numerator is zero. Thus $f^{\prime}=0$ only when $x-1=0$, or $x=1$.

So the points we have to evaluate are: 0,1 , and 3 . We have

$$
\begin{aligned}
& f(0)=\sqrt{8} \\
& f(1)=\sqrt{9}=3 \\
& f(3)=\sqrt{5}
\end{aligned}
$$

Therefore, the absolute maximum is 3 , and this occurs at the point 1 . The absolute minimum is $\sqrt{5}$, and this occurs at the point 3 .

Finally, note that this is just an arc of a circle graph!! since $8-x^{2}+2 x=3^{2}-(x-1)^{2}$. Thus, $(x-1)^{2}+y^{2}=3^{2}$, which is a circle of radius 3 and center (1,0). Now our answers make geometric sense.

