Geometry	Algebra in 2-dims	Algebra in 3-dims
Vector v is represented by a directed line segment.	$\mathbf{v} = \langle v_1, v_2 \rangle$	$\mathbf{v} = \langle v_1, v_2, v_3 \rangle$
Any two line segments which are in same direction and of same length represent the same vector.	The directed line segment connects the initial point $(0,0)$ to the terminal point (v_1, v_2) .	The directed line segment connects the initial point $(0,0,0)$ to the terminal point (v_1, v_2, v_3) .
Addition of vectors Triangle Law for $\mathbf{u} + \mathbf{v}$	Coordinate-wise addition $\langle u_1, u_2 \rangle + \langle v_1 + v_2 \rangle = \langle u_1 + v_1, u_2 + v_2 \rangle$	Coordinate-wise addition $\langle u_1, u_2, u_3 \rangle + \langle v_1, v_2, v_3 \rangle = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$
Addition is commutative $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ is seen using a parallelogram.	$ \langle u_1, u_2 \rangle + \langle v_1, v_2 \rangle = $ $ \langle u_1 + v_1, u_2 + v_2 \rangle = $ $ \langle v_1 + u_1, v_2 + u_2 \rangle = $ $ \langle v_1, v_2 \rangle + \langle u_1, u_2 \rangle $	$\langle u_{1}, u_{2}, u_{3} \rangle + \langle v_{1}, v_{2}, v_{3} \rangle = \langle u_{1} + v_{1}, u_{2} + v_{2}, u_{3} + v_{3} \rangle = \langle v_{1} + u_{1}, v_{2} + u_{2}, v_{3} + u_{3} \rangle = \langle v_{1}, v_{2}, v_{3} \rangle + \langle u_{1}, u_{2}, u_{3} \rangle$
Scalar multiplication $c\mathbf{u}$ is defined by rescaling for $c>0$ and also reversing the direction for $c<0$	$c\langle u_1, u_2 \rangle = \langle cu_1, cu_2 \rangle$	$c\langle u_1, u_2, u_3 \rangle = \langle cu_1, cu_2, cu_3 \rangle$
The zero vector O has no length and arbitrary (no) direction	$0 = \langle 0, 0 \rangle$	$0 = \langle 0, 0, 0 \rangle$

Geometry	Algebra in 2-dims	Algebra in 3-dims
The negative of a vector -v is obtained from v by reversing the direction v -v	$-\langle v_1, v_2 \rangle = \langle -v_1, -v_2 \rangle$	$-\langle v_1, v_2, v_3 \rangle = \langle -v_1, -v_2, -v_3 \rangle$
Difference vector $\mathbf{u} - \mathbf{v}$ connects tip of \mathbf{v} to tip of \mathbf{u} . $\mathbf{v} + (\mathbf{u} - \mathbf{v}) = \mathbf{u}$	$\langle u_1 - v_1, u_2 - v_2 \rangle$ connects (v_1, v_2) to (u_1, u_2) .	$\langle u_1 - v_1, u_2 - v_2, u_3 - v_3 \rangle$ connects (v_1, v_2, v_3) to (u_1, u_2, u_3) .
Components $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$	$\langle u_1, u_2 \rangle = u_1 \langle 1, 0 \rangle + u_2 \langle 0, 1 \rangle$	$\langle u_1, u_2 \rangle = u_1 \langle 1, 0, 0 \rangle + u_2 \langle 0, 1, 0 \rangle + u_3 \langle 0, 0, 1 \rangle$
$Magnitude$ $ \mathbf{u} $ is the length of any line segment representing \mathbf{u} .	$ \langle u_1, u_2 \rangle = \sqrt{u_1^2 + u_2^2}$	$ \langle u_1, u_2, u_3 \rangle = \sqrt{u_1^2 + u_2^2 + u_3^2}$
$\begin{aligned} & Dot \ Product \\ & \mathbf{u} \cdot \mathbf{v} = \mathbf{u} \mathbf{v} \cos \theta \\ & \theta \text{ is radian measure of the} \\ & \text{angle between } \mathbf{u} \text{ and } \mathbf{v}. \end{aligned}$	$\langle u_1, u_2 \rangle \cdot \langle v_1, v_2 \rangle = u_1 v_1 + u_2 v_2$	$\langle u_1, u_2, u_3 \rangle \cdot \langle v_1, v_2, v_3 \rangle = u_1 v_1 + u_2 v_2 + u_3 v_3$
Cross Product (3-dim only) $(\mathbf{u} \times \mathbf{v}) \perp \mathbf{u} \text{ and } (\mathbf{u} \times \mathbf{v}) \perp \mathbf{v}$ $\{\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v}\} \text{ forms a}$ $\text{right-handed system, and}$ $ \mathbf{u} \times \mathbf{v} = \mathbf{u} \mathbf{v} \sin \theta$		$\langle u_1, u_2, u_3 \rangle \times \langle v_1, v_2, v_3 \rangle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$ $= \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$

Properties of vector addition and scalar multiplication

1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

2.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

3.
$$u + 0 = u$$

4.
$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$

5.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

6.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

7.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

8.
$$1u = u$$