
PRINT NAME: SOLUTIONS

Calculus IV [2443–002] Midterm II

Q1]...[10 points] Consider the double integral∫ 1

0

∫ 2−2y

−
√

1−y
f(x, y) dx dy

Sketch the region of integration.

Soln. The limits x = 2− 2y and x = −
√

1− y tell us that the region is bounded on the right by the line
x + 2y = 2 and on the left by the parabola (left half) y = 1 − x2. The limits y = 0 and y = 1 tell us the
upper and lower bounds for this region. We see that the parabola and line already intersect at y = 1, so
the region is drawn as shown.
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Reverse the order of integration.

Soln. Note that reversing the order of integration means building up the region using vertical strips.
There are two different tops on this region; the parabola top on the left side of the y-axis, and the straight
line top on the right side. Thus, we have to divide the region into two pieces along the y-axis. So our
answer will be a sum of two iterated integrals as shown.∫ 0

−1

∫ 1−x2

0
f(x, y) dy dx +

∫ 2

0

∫ (2−x)/2

0
f(x, y) dy dx

Q2]...[10 points] Consider the following polar coordinates double integral∫ π/4

−π/4

∫ sec θ

0
r3dr dθ

Sketch the region of integration.

Soln. Note that the lines θ = π/4 and θ = −π/4 correspond to the cartesian lines y = x and y = −x
respectively. Also the curve r = sec θ is just r = 1

cos θ
which rewrites as r cos θ = 1 or x = 1. [Gotta hate

those trig functions!] Thus we get the following region.
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Rewrite the integral as an iterated Cartesian coordinates integral (with appropriate limits). You do NOT
have to compute this integral.

Soln. Remember that dA = rdrdθ and that the remaining r2 can be written as r2 = x2 + y2. Thus we get
the following iterated integral. ∫ 1

0

∫ x

−x
x2 + y2 dy dx

Q3]...[20 points] Use double integrals in polar coordinates to compute the surface area of the portion of
the sphere x2 + y2 + z2 = a2 which is above the xy-plane and which lies inside the cone z2 = x2 + y2. Your
answer will involve a.

Soln. We saw in class that surface area of a portion (over the region R) of the graph of z = f(x, y) is
given by ∫ ∫

R

√
f 2
x + f 2

y + 1 dA

In this case we have (by implicit differentiation of the sphere equation) fx = −x/z and (likewise) fy = −y/z.
We did a sphere example in class! Check out the implicit differentiation details there! Thus,

f 2
x + f 2

y + 1 =
x2 + y2 + z2

z2
=

a2

z2

which becomes
a2

a2 − r2

in polar coordinates.
Now the cone equation is z2 = r2 and this intersects the sphere when r2 + r2 = a2 or r = a/

√
2. Thus,

the region that we are integrating over in the plane is given by 0 ≤ θ ≤ 2π and 0 ≤ r ≤ a/
√

2.
Filling all this into the surface area integral (and remembering that dA = rdr dθ) gives∫ 2π

0

∫ a/
√

2

0

ar√
a2 − r2

dr dθ

We use the substitution u = a2− r2 (so that rdr = −du/2) to evaluate the r integral. Here’s what we end
up with.

[θ]2π0 [−a
√
a2 − r2]

a/
√

2
0 = (2π)(−a2/

√
2 + a2) = 2πa2(1− 1/

√
2)



Q4]...[20 points] Use the method of Lagrange multipliers to find the maximum and minimum values of
the function f(x, y, z) = xy + z2 on the sphere x2 + y2 + z2 = 4.

Soln. ∇f = 〈y, x, 2z〉 and ∇g = 〈2x, 2y, 2z〉 so the Lagrange multiplier equations are

y = 2λx

x = 2λy

2z = 2λz

4 = x2 + y2 + z2

So that’s it for the calculus. Now we just have to keep our head with all this algebra. First of all, note
that the first two equations tell us that x = 0 precisely when y = 0 (since x and y are multiples of each
other). So let’s break this analysis into two cases.

Case I: [x = 0 and y = 0] In this case the fourth equation becomes z2 = 4 and so we get z = ±2. Thus,
we get two points: (0, 0, 2) and (0, 0,−2).

Case II: [x 6= 0 and y 6= 0] In this case the first two equations give x/y = 2λ = y/x. But this means that
2λ must be equal to its own reciprocal (since x/y and y/x are reciprocals) and so must be ±1. Thus the
third equation becomes 2z = ±z which implies that z = 0. Now equation 4 becomes 2x2 = 4 or x = ±

√
2.

We get four points: (−
√

2,−
√

2, 0), (−
√

2,
√

2, 0), (
√

2,−
√

2, 0), and (
√

2,
√

2, 0).

Finally, we evaluate f on these 6 points and see that the maximum f -value is 4 (occurs at (0, 0, 2) and
(0, 0,−2)), and that the minimum f -value is -2 (occurs at (−

√
2,
√

2, 0) and (
√

2,−
√

2, 0)).

Bonus Question. Let u and v be differentiable functions of one variable with derivatives denoted by u′

and v′ respectively. Let R be the triangular region with vertices at the points (a, a), (b, b) and (b, a). By
evaluating the double integral ∫ ∫

R
u′(x) v′(y) dA

in two different ways (as iterated integrals), give a new derivation of the integration by parts formula∫ b

a
u dv = uv |ba −

∫ b

a
v du .

Soln.

Here is a diagram of the triangular region with
its sides labelled.
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On the one hand, we can integrate with respect to y first to get∫ ∫
R
u′(x) v′(y) dA =

∫ b

a

(∫ x

a
u′(x)v′(y) dy

)
dx

=
∫ b

a
[u′(x)v(y)]xa dx

=
∫ b

a
u′(x)v(x)− u′(x)v(a) dx

=
∫ b

a
v(x)u′(x) dx − [u(x)v(a)]ba

=
∫ b

a
v(x)u′(x) dx − u(b)v(a) + u(a)v(a)

On the other hand, we can integrate with respect to x first to get

∫ ∫
R
u′(x) v′(y) dA =

∫ b

a

(∫ b

y
u′(x)v′(y) dx

)
dy

=
∫ b

a
[u(x)v′(y)]by dy

=
∫ b

a
u(b)v′(y)− u(y)v′(y) dy

= [u(b)v(y)]ba −
∫ b

a
u(y)v′(y) dy

= u(b)v(b) − u(b)v(a) −
∫ b

a
u(y)v′(y) dy

Finally, setting these two expressions equal to each other gives∫ b

a
v(x)u′(x) dx − u(b)v(a) + u(a)v(a) = u(b)v(b) − u(b)v(a) −

∫ b

a
u(y)v′(y) dy

which simplifies down to (removing explicit reference to the dummy variables of integration x and y)∫ b

a
v du = uv|ba −

∫ b

a
u dv

and we’re finished.


