Calculus IV [2443-002] Quiz II

Q1]... State the second derivative test for functions of two variables.
Ans: Let (a, b) satisfy $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$. Define

$$
D(x, y)=\left(f_{x x}\right)\left(f_{y y}\right)-\left(f_{x y}\right)^{2}
$$

- If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then (a, b) is a local minimum point.
- If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then (a, b) is a local maximum point.
- If $D(a, b)<0$ and $f_{x x}(a, b)>0$, then (a, b) is neither a local max nor a local min point [Saddle].
- (If $D(a, b)=0$, the test is inconclusive.)

Q2]... Find and test the critical points of the function

$$
f(x, y)=x y e^{-\left(x^{2}+y^{2}\right) / 2} .
$$

Soln: We compute the first derivatives using the product and chain rules.

$$
f_{x}=\left(1-x^{2}\right) y e^{-\left(x^{2}+y^{2}\right) / 2} \quad f_{y}=\left(1-y^{2}\right) x e^{-\left(x^{2}+y^{2}\right) / 2}
$$

Since e to any power is always positive, we see that $f_{x}=0=f_{y}$ if and only if $\left(1-x^{2}\right) y=0=\left(1-y^{2}\right) x$, and that these equations are true if and only if (x, y) is one of the following five points: $(0,0),(1,1),(1,-1),(-1,1),(-1,-1)$.

Now, the second derivatives work out to be

$$
f_{x x}=-2 x y e^{-\left(x^{2}+y^{2}\right) / 2}-x y\left(1-x^{2}\right) e^{-\left(x^{2}+y^{2}\right) / 2}
$$

and

$$
f_{y y}=-2 x y e^{-\left(x^{2}+y^{2}\right) / 2}-x y\left(1-y^{2}\right) e^{-\left(x^{2}+y^{2}\right) / 2}
$$

and

$$
f_{x y}=\left(1-x^{2}\right)\left(1-y^{2}\right) e^{-\left(x^{2}+y^{2}\right) / 2}
$$

Thus, we can evaluate the second derivatives at the critical points to get.

- $D(0,0)=0^{2}-1^{2}=-1<0$ implies a saddle point at $(0,0)$.
- $D(-1,1)=D(1,-1)=\left(2 e^{-1}\right)^{2}-0^{2}>0$, and $f_{x x}(-1,1)=f_{x x}(1,-1)=2 e^{-1}>0$ implies a local minimum at $(-1,1)$ and at $(1,-1)$.
- $D(-1,-1)=D(1,1)=\left(-2 e^{-1}\right)^{2}-0^{2}>0$, and $f_{x x}(-1,-1)=f_{x x}(1,1)=-2 e^{-1}<0$ implies a local maximum at $(-1,-1)$ and at $(1,1)$.

