Calculus IV [2443-004] Midterm II

For full credit, give reasons for all your answers.

Q1]...[15 points] For the double integral below, first sketch the region of integration, and then convert it to a polar coordinares integral.

$$
\int_{0}^{2} \int_{-\sqrt{2 y-y^{2}}}^{\sqrt{2 y-y^{2}}} f(x, y) d x d y
$$

Q2]...[15 points] Use double integrals to find the volume of the region which is under the paraboloid $z=x^{2}+y^{2}$ and above the region bounded by $x=y^{2}$ and $y=x-6$.

Q3]...[15 points] Find the surface area of the part of the paraboloid

$$
z=4-x^{2}-y^{2}
$$

which lies above the plane $z=2$ and is contained in the first octant [ie. $x \geq 0, y \geq 0$, and $z \geq 0$].
Q4]...[15 points] Use the method of Lagrange Multipliers to find the maximum and minimum values of the function $f(x, y, z)=x y z$ on the sphere $x^{2}+y^{2}+z^{2}=12$.

