Q1]... [16 points] Evaluate the following trigonometric integrals. Show all your work.

$$
\begin{gathered}
\int \sin ^{2}(x) d x \\
\int \sin ^{2}(x) d x=\frac{1}{2} \int(1-\cos (2 x)) d x=\frac{1}{2}\left(x-\frac{\sin (2 x)}{2}\right)+C \\
\int \sec ^{3}(x) \tan ^{2}(x) d x
\end{gathered}
$$

Let $u=\sec (x)+\tan (x)$ and $v=\sec (x)-\tan (x)$. Recall that $u v=1$, and $\sec (x)=(u+v) / 2$, and $\tan (x)=(u-v) / 2$. Recall also that $\sec (x) d x=d u / u=-d v / v$. We get

$$
\int=\int((u+v) / 2)^{2}((u-v) / 2)^{2} \sec (x) d x=\frac{1}{16} \int\left(u^{2}-v^{2}\right)^{2} \sec (x) d x
$$

Since $u v=1$ the square term becomes $u^{4}-2+v^{4}$, and so the integral becomes

$$
\frac{1}{16} \int\left(u^{4}-2\right) \frac{d u}{u}-\frac{1}{16} \int v^{4} \frac{d v}{v}=\frac{1}{64} u^{4}-\frac{1}{8} \ln |u|-\frac{1}{64} v^{4}+C
$$

Q2]... [16 points] Evaluate the following integrals.

$$
\int x^{2} e^{x} d x
$$

Use integration by parts with $u=x^{2}$ and $d v=e^{x} d x$ so that $d u=2 x d x$ and $v=e^{x}$.

$$
\int x^{2} e^{x} d x=x^{2} e^{x}-2 \int x e^{x} d x
$$

We evaluate the last integral above by parts again with $u=x$ and $d v=e^{x} d x$ so $d u=d x$ and $v=e^{x}$. This gives

$$
\begin{gathered}
\int x^{2} e^{x} d x=x^{2} e^{x}-2\left(x e^{x}-\int e^{x} d x\right)=x^{2} e^{x}-2 x e^{x}+2 e^{x}+C \\
\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x
\end{gathered}
$$

Let $x=3 \sin (\theta)$ so that $d x=3 \cos (\theta) d \theta$ and $\sqrt{9-x^{2}}=3 \cos (\theta)$. We get

$$
\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x=\int \frac{(3 \sin (\theta))^{2} 3 \cos (\theta) d \theta}{3 \cos (\theta)}=9 \int \sin ^{2}(\theta) d \theta
$$

We did this integral in Question 1 above. Thus the original integral is equal to

$$
\frac{9 \theta}{2}-\frac{9 \sin (2 \theta)}{4}+C=\frac{9 \theta}{2}-\frac{9(2 \sin (\theta) \cos (\theta))}{4}+C=\frac{9}{2} \sin ^{-1}\left(\frac{x}{3}\right)-\frac{1}{2} x \sqrt{9-x^{2}}+C
$$

Q3]... [9 points] Find constants A, B, C which make the following a true statement.

$$
\frac{1-x}{x^{3}+9 x}=\frac{A}{x}+\frac{B x+C}{x^{2}+9}
$$

Writing the RHS as a single fraction, and comparing numerators gives

$$
A\left(x^{2}+9\right)+B x^{2}+C x=1-x
$$

Thus

$$
A+B=0, \quad C=-1, \quad 9 A=1
$$

and so $A=1 / 9, B=-1 / 9$ and $C=-1$.
Using your answer above, evaluate the integral

$$
\int \frac{1-x}{x^{3}+9 x} d x
$$

By the partial fractions algebra above, we can rewrite the integral as

$$
\frac{1}{9} \int \frac{d x}{x}-\frac{1}{9} \int \frac{x d x}{x^{2}+9}-\int \frac{d x}{x^{2}+9}
$$

The first term is a log integral, the second term is a log integral (after making the substitution $u=x^{2}+9$ and $d u / 2=x d x$), and the third term is an arctan integral. Thus we get

$$
\int \frac{1-x}{x^{3}+9 x} d x=\frac{1}{9} \ln |x|-\frac{1}{18} \ln \left(x^{2}+9\right)-\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)+C
$$

Q4]...[9 points] Show that

$$
\cosh ^{2}(x)-\sinh ^{2}(x)=1
$$

By definition of $\cosh (x)$ and $\sinh (x)$, the left hand side is equal to

$$
\left(\left(e^{x}+e^{-x}\right) / 2\right)^{2}-\left(\left(e^{x}-e^{-x}\right) / 2\right)^{2}=\frac{e^{2 x}+2+e^{-2 x}-\left(e^{2 x}-2+e^{-2 x}\right)}{4}=\frac{2+2}{4}=1
$$

Show that

$$
\frac{d}{d x} \sinh (x)=\cosh (x)
$$

By definition of $\cosh (x)$ and $\sinh (x)$ we get that the left side is equal to

$$
\frac{d}{d x} \frac{e^{x}-e^{-x}}{2}=\frac{e^{x}-e^{-x}(-1)}{2}=\frac{e^{x}+e^{-x}}{2}
$$

which is equal to the right side.
Now determine the derivative

$$
\frac{d}{d x} \sinh ^{-1}(x)
$$

The function $y=\sinh ^{-1}(x)$ can be rewritten as $x=\sinh (y)$. We differentiate this implicitly with respect to x to get

$$
1=\frac{d x}{d x}=\frac{d \sinh (y)}{d x}=\frac{d \sinh (y)}{d y} \frac{d y}{d x}=\cosh (y) \frac{d y}{d x}
$$

Solving for $\frac{d y}{d x}$ gives us

$$
\frac{d}{d x} \sinh ^{-1}(x)=\frac{d y}{d x}=\frac{1}{\cosh (y)}=\frac{1}{\sqrt{\cosh ^{2}(y)}}=\frac{1}{\sqrt{1+\sinh ^{2}(y)}}=\frac{1}{\sqrt{1+x^{2}}}
$$

1. Trig Addition.
$\cos (A \pm B)=\cos (A) \cos (B) \mp \sin (A) \sin (B)$
$\cos (2 A)=\cos ^{2}(A)-\sin ^{2}(A)$
$\cos (2 A)=2 \cos ^{2}(A)-1$
$\cos (2 A)=1-2 \sin ^{2}(A)$
$\sin (A \pm B)=\sin (A) \cos (B) \pm \cos (A) \sin (B)$.
2. Hyperbolic.
$\sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$
$\cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$
3. Integration by Parts.
$\int u d v=u v-\int v d u$
4. Inverse Trig.
$\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}$
$\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)$
5. Jon McCammond Dictionary.

$$
\begin{aligned}
& u=\sec (x)+\tan (x) \text { and } v=\sec (x)-\tan (x) \\
& \sec (x)=\frac{u+v}{2}, \text { and } \tan (x)=\frac{u-v}{2}, \text { and } u v=1 \\
& \sec (x) d x=\frac{d u}{u} \text { and } \sec (x) d x=\frac{-d v}{v}
\end{aligned}
$$

6. Trig Substitutions.

For $\sqrt{a^{2}-x^{2}}$ use $x=a \sin (\theta)$
For $\sqrt{a^{2}+x^{2}}$ use $x=a \tan (\theta)$
For $\sqrt{x^{2}-a^{2}}$ use $x=a \sec (\theta)$

