
CALCULUS III FALL 1999

HOMEWORK 10 { ANSWERS

x10.11 Question 6,8,12,16,20; x10.12 Questions 10,12
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We applied the binomial theorem to the variable x=2 so the possible range of values
is given by jx=2j < 1 which gives jxj < 2 and so the radius of convergence is 2.
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We applied the binomial theorem to the variable �x3 so the possible range of values
is given by j�x3j < 1 which is the same as jxj < 1 and so the radius of convergence
is 1.
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It follows that the Taylor polynomials are
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We applied the binomial theorem to the variable x=4 so the possible range of values
is given by jx=4j < 1 which gives jxj < 4 and so the radius of convergence is 4. The
graphs are given below
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16.
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We applied the binomial theorem to the variable x=8 so the possible range of values
is given by jx=8j < 1 which gives jxj < 8 and so the radius of convergence is 8.

For part b). we put x = 0:2 to get
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The alternating nature of this series suggests that the required answer is given by
the partial sum sn where
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We �nd that this is satis�ed when n = 2 and so the required estimate is
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It follows that
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10. We have f 0(x) = �1=x2; f 00(x) = 2=x3 and, in general, f (n)(x) = (�1)nn!=xn+1,
which gives f (n)(1) = (�1)nn!. It follows that the required Taylor series is
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Notice that there is another way to reach this same conclusion,
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It follows that T1(x) = 1�(x�1) = 2�x; T2(x) = 1�(x�1)+(x�1)2 = 3�3x+x2

and T3(x) = 1� (x� 1) + (x� 1)2 � (x� 1)3 = 4� 6x+ 4x2 � x3. The graphs are
shown below
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22. We have f (n)(x) = (�1)n�1(n� 1)!=xn if n > 1. It follows that
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The third Taylor polynomial is

T3(x) = ln 4 +
x� 4
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The remainder term is R3(x) = �(x � 4)4=(4z4) where z is between x and 4. We
have 3 6 x 6 5 and so 3 < z < 5, hence jR3(x)j < 1=(4(34)) = 1=324 ' 0:0031.
The graph of f and T3 are given below
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