CALCULUS III FALL 1999
HOMEWORK 10 - ANSWERS

§10.11 Question 6,8,12,16,20; §10.12 Questions 10,12
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We applied the binomial theorem to the variable z/2 so the possible range of values
is given by |z/2| < 1 which gives |z| < 2 and so the radius of convergence is 2.
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We applied the binomial theorem to the variable —z2 so the possible range of values

is given by | — 23| < 1 which is the same as |z| < 1 and so the radius of convergence
is 1.
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It follows that the Taylor polynomials are
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We applied the binomial theorem to the variable z/4 so the possible range of values
is given by |z /4| < 1 which gives |z| < 4 and so the radius of convergence is 4. The
graphs are given below
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16.
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We applied the binomial theorem to the variable z/8 so the possible range of values
is given by |z/8| < 1 which gives || < 8 and so the radius of convergence is 8.
For part b). we put z = 0.2 to get
= 125...(3n—4) 1
2y (-t —.
nz::(]( ) 23n3np!  5n
The alternating nature of this series suggests that the required answer is given by
the partial sum s,, where
25...3n—-1) 1
SanTagnii,| Hnil < 0.00005.
We find that this is satisfied when n = 2 and so the required estimate is
\3/82~2(1+L—;> ~ 2.0165
o 120 14400/ — ’
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It follows that
ARR() o (2n)! 6!
G - (—1) 221 (1) and so F9(0) = _9!E = —113, 400.
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We have f'(z) = —1/22, f"(x) = 2/2® and, in general, (™) (z) = (—=1)"n!/z"+1,
which gives f(")(1) = (—=1)"n!. It follows that the required Taylor series is

oo

> ()™M —1)"

n=0

Notice that there is another way to reach this same conclusion,
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1—(z—1)+(z—1)> = 3—3x+2>

It follows that T} (z) = 1— =
)+ (x—1)2—(z—1)3 =4 — 6z + 42% — 23. The graphs are

and T5(z) =1—(z—1
shown below
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22. We have f(™)(z) = (=1)""(n — 1)!/2™ if n > 1. It follows that
Inz =1In4 + i ﬂ(m —4H"
= ndn )

The third Taylor polynomial is

r—4 x —4)2 x —4)3
T3(z) =Ind + 1 _ 32) +( 192).

The remainder term is Rz(z) = —(x — 4)*/(42%) where z is between x and 4. We
have 3 < z < 5 and so 3 < z < 5, hence |R3(z)| < 1/(4(3%)) = 1/324 ~ 0.0031.
The graph of f and T3 are given below
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