FALL 1999
HOMEWORK 11 - ANSWERS
$\S 11.1$ Question 6,14,16,20; §11.2 Questions 22,40; §11.3 Questions 6,8,24,34,56,58
6. We have $A B=3, B C=3, A C=\sqrt{26}$. So the triangle is isosceles but not a right triangle.
14. The equation is

$$
(x-1)^{2}+(y-2)^{2}+(z+3)^{2}=49
$$

which is

$$
x^{2}-2 x+y^{2}-4 y+z^{2}+6 z=35 .
$$

16.

$$
x^{2}+y^{2}+z^{2}=6 x+4 y+10 z
$$

gives

$$
(x-3)^{2}+(y-2)^{2}+(z-5)^{2}=9+4+25=38
$$

so the centre of the circle is at $(3,2,5)$ and its radius is $\sqrt{38}$.
20. The equation is equivalent to

$$
\left(x+\frac{a}{2}\right)^{2}+\left(y+\frac{b}{2}\right)^{2}+\left(z+\frac{c}{2}\right)^{2}+d=\frac{a^{2}+b^{2}+c^{2}}{4}
$$

which is the equation of circle with centre $(-a / 2,-b / 2,-c / 2)$ and radius

$$
\frac{1}{2} \sqrt{a^{2}+b^{2}+c^{2}-4 d}
$$

22. The vector $\mathbf{v}=\mathbf{i}-4 \mathbf{j}+8 \mathbf{k}$ has length 9 and so the required vector is $\mathbf{v} / 9$.
23. If the vectors \mathbf{a} and \mathbf{b} lie along two sides of the triangle, then $\mathbf{a}-\mathbf{b}$ lies along the third side. The midpoints of the first two sides are at the heads of the vectors $\mathbf{a} / 2$ and $\mathbf{b} / 2$. So the required result is a consequence of the observation $\mathbf{a} / 2-\mathbf{b} / 2=$ $(\mathbf{a}-\mathbf{b}) / 2$.
24. $\mathbf{a} \cdot \mathbf{b}=1$.
25.

$$
\mathbf{a} \cdot \mathbf{b}=6\left(\frac{1}{3}\right) \cos \frac{\pi}{4}=\frac{2}{\sqrt{2}}=\sqrt{2} .
$$

24. Note that $\mathbf{b}=(-3 / 2) \mathbf{a}$, so the vectors are parallel.
25. Note that $|\mathbf{a}|=5 \sqrt{2}$ and so the direction cosines are $3 /(5 \sqrt{2}, 1 \sqrt{2}, 4 /(5 \sqrt{2})$. The direction angles are just the inverse cosines of these - you can use your calculator to approximate these, but note that one of them is $\pi / 4$.
26. The required angle is the same as the angle between $\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\mathbf{i}+\mathbf{j}$. We have $|\mathbf{i}+\mathbf{j}+\mathbf{k}|=\sqrt{3}$ and $|\mathbf{i}+\mathbf{j}|=\sqrt{2}$ and $(\mathbf{i}+\mathbf{j}+\mathbf{k}) \cdot(\mathbf{i}+\mathbf{j})=2$. So the required angle is $\cos ^{-1} \sqrt{6} / 3$.
27. In order to show that the two angles are equal, it suffices to prove that

$$
\mathbf{c} \cdot \frac{\mathbf{a}}{|\mathbf{a}|}=\mathbf{c} \cdot \frac{\mathbf{b}}{|\mathbf{b}|} .
$$

We note that

$$
\mathbf{c} \cdot \frac{\mathbf{a}}{|\mathbf{a}|}=\mathbf{b} \cdot \mathbf{a}+|\mathbf{a}||\mathbf{b}|=\mathbf{c} \cdot \frac{\mathbf{b}}{|\mathbf{b}|},
$$

and so we are finished.

