CALCULUS III

FALL 1999
HOMEWORK 12 - ANSWERS
§11.4 Questions 6,24,28,30; §11.5 Questions 8,16,34,38,54,64
6.

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & -1 \\
3 & -1 & 7
\end{array}\right|=13 \mathbf{i}-10 \mathbf{j}-7 \mathbf{k}
$$

24.

(a) The plane is parallel to the vectors $4 \mathbf{i}+9 \mathbf{j}+3 \mathbf{k}$ and $7 \mathbf{i}+5 \mathbf{j}+6 \mathbf{k}$. So the required orthogonal vector is

$$
(4 \mathbf{i}+9 \mathbf{j}+3 \mathbf{k}) \times(7 \mathbf{i}+5 \mathbf{j}+6 \mathbf{k})=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
4 & 9 & 3 \\
7 & 5 & 6
\end{array}\right|=39 \mathbf{i}-3 \mathbf{j}-43 \mathbf{k} .
$$

(b) The area of the triangle is $\frac{1}{2}|39 \mathbf{i}-3 \mathbf{j}-43 \mathbf{k}|=\frac{1}{2} \sqrt{3379}$.
28. The parallelepiped is generated by the vectors $2 \mathbf{i}+3 \mathbf{j}+3 \mathbf{k},-\mathbf{i}-\mathbf{j}-\mathbf{k}$ and $6 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$. So the volume is

$$
\left\|\begin{array}{ccc}
2 & 3 & 3 \\
-1 & -1 & -1 \\
6 & -2 & 2
\end{array}\right\|=4
$$

30. These four points can be used to form a parallelepiped, as in the previous question. The points are coplanar (lie in a single plane) precisely when this parallelepiped has zero volume.

The parallelepiped is generated by the vectors $\mathbf{i}+4 \mathbf{j}+5 \mathbf{k}, 2 \mathbf{i}-\mathbf{j}+\mathbf{k}$ and $5 \mathbf{i}+2 \mathbf{j}+7 \mathbf{k}$. The volume of the parallelepiped is therefore

$$
\left\|\begin{array}{ccc}
1 & 4 & 5 \\
2 & -1 & 1 \\
5 & 2 & 7
\end{array}\right\|=0, \text { as required. }
$$

8. The vector $\mathbf{v}=4 \mathbf{i}-3 \mathbf{j}-(1 / 2) \mathbf{k}$ is parallel to the line. So the vector equation of the line can be written as

$$
\mathbf{r}=-\mathbf{i}+4 \mathbf{j}+\mathbf{k}+t(4 \mathbf{i}-3 \mathbf{j}-(1 / 2) \mathbf{k})
$$

It follows that the parametric eautions are

$$
x=-1+4 t, \quad y=4-3 t, \quad z=1-\frac{t}{2}
$$

and the symmetric equations are

$$
\frac{x=1}{4}=-\frac{y-4}{3}=-(2 z-2)
$$

16. The parametric equations of the lines are

$$
x=1+2 t, y=t, z=1+4 t \quad \text { and } \quad x=s, y=-2+2 s, z=-2+3 s
$$

Note that putting $t=0$ and $s=1$ yields the point of intersection $(1,0,1)$.
34. Note that $\mathbf{v}=5 \mathbf{i}+\mathbf{j}-\mathbf{k}$ is parallel to the line. Also $(0,1,0)$ is a point on the line. Hence the plane is also parallel to the vector $\mathbf{w}=-\mathbf{i}-\mathbf{j}+\mathbf{k}$. Consequently $\mathbf{v} \times \mathbf{w}=-4 \mathbf{j}-4 \mathbf{k}$ is orthogonal to the plane. It follows that the equation of the plane is $y+z=1$.
38. The appropriate parameter value is given by the equation

$$
1+t=1-2+2 t+t=-1+3 t \quad \text { and so } \quad t=1
$$

Consequently the point of intersection is $(0,1,2)$.
54. The normals to the given planes are

$$
\mathbf{a}=\mathbf{i}-\mathbf{k} \quad \mathbf{b}=\mathbf{j}+2 \mathbf{k} \quad \mathbf{c}=\mathbf{i}+\mathbf{j}-2 \mathbf{k} .
$$

The required plane contains $\mathbf{a} \times \mathbf{b}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and \mathbf{c}. So the normal to the plane is $(\mathbf{i}-2 \mathbf{j}+\mathbf{k}) \times \mathbf{c}=3 \mathbf{i}+3 \mathbf{j}+3 \mathbf{k}$. Finally note that $(1,3,0)$ is a point of the plane and so the equation of the plane is $x+y+z=4$.
64. The required distance is

$$
\frac{|12+12+7-5|}{\sqrt{16+36+1}}=\frac{26}{\sqrt{53}} .
$$

