CALCULUS III
FALL 1999
HOMEWORK 2 - ANSWERS
$\S 9.3$ Questions $6,8,12,22,24 ; \S 9.4$ Questions $26,36,40,42,78$
6. We have

$$
\frac{d x}{d \theta}=a(-\sin \theta+\sin \theta+\theta \cos \theta)=a \theta \cos \theta
$$

and

$$
\frac{d y}{d \theta}=a(\cos \theta-\cos \theta+\theta \sin \theta)=a \theta \sin \theta
$$

So the required length is

$$
L=\int_{0}^{\pi} \sqrt{a^{2} \theta^{2} \cos ^{2} \theta+a^{2} \theta^{2} \sin ^{2} \theta} d \theta=\int_{0}^{\pi}|a| \theta d \theta=\frac{1}{2} \pi^{2}|a| .
$$

8. We have

$$
\frac{d x}{d t}=e^{t}-1 \quad \text { and } \quad \frac{d y}{d t}=2 e^{t / 2}
$$

So the required length is

$$
L=\int_{0}^{1} \sqrt{\left(e^{t}-1\right)^{2}+4 e^{t}} d t=\int_{0}^{1}\left(1+e^{t}\right) d t=e
$$

12. We have

$$
\frac{d x}{d \theta}=-\frac{2 a}{\sin ^{2} \theta} \quad \text { and } \quad \frac{d y}{d \theta}=4 a \sin \theta \cos \theta
$$

So the required length is

$$
L=\int_{\pi / 4}^{\pi / 2} \sqrt{\frac{4 a^{2}}{\sin ^{4} \theta}+16 a^{2} \sin ^{2} \theta \cos ^{2} \theta} d \theta \simeq 2.26|a|
$$

22. We have $d x / d t=3-3 t^{2}$ and $d y / d t=6 t$, so the required surface area is

$$
\begin{aligned}
S & =2 \pi \int_{0}^{1} 3 t^{2} \sqrt{\left(3-3 t^{2}\right)^{2}+36 t^{2}} d t=6 \pi \int_{0}^{1} t^{2} \sqrt{9 t^{4}+18 t^{2}+9} d t \\
& =6 \pi \int_{0}^{1} t^{2}\left(3 t^{2}+3\right) d t=18 \pi\left[\frac{t^{5}}{5}+\frac{t^{3}}{3}\right]_{0}^{1}=\frac{48}{5} \pi
\end{aligned}
$$

24. Notice that, as $\theta$ varies from $-\pi$ to $\pi$ the curve is below the $x$-axis and as it varies from 0 to $\pi$ it desrcibes the mirror image above the $x$-axis, this follows from the fact that $\sin$ is an odd function. Note that for $0 \leqslant \theta \leqslant \pi, d y / d x=$ $(\cos \theta-\cos 2 \theta) /(\sin 2 \theta-\sin \theta)$ except when $\theta=0, \pi / 3, \pi$. In this parameter interval, $d y / d \theta>0$ for $\theta<\theta_{0}$ where $\cos \theta_{0}=(1-\sqrt{5}) / 4$ and $d y / d \theta<0$ for $\theta>\theta_{0}$. Similarly, $d x / d \theta>0$ for $\theta<\pi / 3$; and $d x / d \theta<0$ for $\theta>\pi / 3$. So $d y / d x>0$ if $0<\theta<\pi / 3 ; d y / d x<0$ if $\pi / 3<\theta<\theta_{0} ; d y / d x>0$ if $\theta_{0}<\theta<\pi$. From these observations we can deduce that the curve has no self intersections for the parameter interval $[0, \pi]$. This can be much more easily observed by asking your calculator to plot the curve. But you should at least know how to derive it without a calculator. The required surface area is obtained by rotating the part of the curve corresponding to $0<\theta<\pi$ about the $x$-axis. This gives

$$
\begin{aligned}
S & =2 \pi \int_{0}^{\pi}(2 \sin \theta-\sin 2 \theta) \sqrt{4(\sin \theta-\sin 2 \theta)^{2}+4(\cos \theta-\cos 2 \theta)^{2}} d \theta \\
& =8 \pi \sqrt{2} \int_{0}^{\pi}(1-\cos \theta) \sin \theta \sqrt{1-\sin \theta \sin 2 \theta-\cos \theta \cos 2 \theta} d \theta \\
& =8 \pi \sqrt{2} \int_{0}^{\pi}(1-\cos \theta)^{3 / 2} \sin \theta d \theta=8 \pi \sqrt{2}\left[2(1-\cos \theta)^{5 / 2} / 5\right]_{0}^{\pi}=\frac{128}{5} \pi
\end{aligned}
$$

26. We have $x=r \cos \theta=2 \sin \theta \cos \theta=\sin 2 \theta$ and $y=r \cos \theta=2 \sin ^{2} \theta=1-\cos 2 \theta$. Consequently, $x^{2}+(y-1)^{2}=1$; which is the circle center $(0,1)$ and radius 1 .
27. We have $r^{2} \cos ^{2} \theta-r^{2} \sin ^{2} \theta=1$ which is equivalent to $r^{2} \cos ^{2} 2 \theta=1$ or $r^{2}=\sec 2 \theta$ for $-\pi / 4<\theta<\pi / 4$.
28. We have $x=r \cos \theta=-4 \sin \theta \cos \theta=-2 \sin 2 \theta$ and $y=r \sin \theta=-4 \sin ^{2} \theta=$ $2(\cos 2 \theta-1)$. Consequently, $x^{2}+(y+2)^{2}=4$ and therefore the curve is the circle center $(0,-2)$ and radius 2 . Alternatively, we recall from class that the curve $r=$ $-4 \cos \theta$ is the circle center $(-2,0)$ and radius 2 . Now note that $\sin \theta=\cos (\theta+\pi / 2)$ and therefore the required cirve arises from rotating the latter circle through $\pi / 2$.
29. Note that $r=2(\sin \theta+\cos \theta)=2 \sqrt{2} \cos (\theta-\pi / 4)$. So we should expect the curve obtained by rotating $r=2 \sqrt{2} \cos \theta$ through $\pi / 4$ (counterclockwise) about the origin. The latter is a circle and so we see that the required curve is

and this curve is described once as $\theta$ varies from 0 to $\pi$.

## 78.

a). $r=\sin (\theta / 2)$ must be a curve which stays within distance one of the origin. It will pass through the origin when $\theta=0,2 \pi, 4 \pi$. Other points where it crosses the $y$-axis arise when $\cos \theta=0$; these are

$$
\theta=\pi / 2,3 \pi / 2,5 \pi / 2,7 \pi / 2
$$

Calculating the $y$-coordinate for these values shows that, apart from the origin, the curve crosses the $y$-axis twice more. The only possible curve is VI.
b). It will pass through the origin when $\theta=0,4 \pi, 8 \pi$, so again we have two passes through the origin. Other intersections with the $y$-axis come from

$$
\theta=\pi / 2,3 \pi / 2,5 \pi / 2,7 \pi / 2,9 \pi / 2,11 \pi / 2,13 \pi / 2,15 \pi / 2
$$

This leads to four different values of $y$, namely $\pm \sin \pi / 8, \pm \sin 3 \pi / 8$, so there are four crossings of the $y$-axis different from the origin. This now has to be curve III.
c). In this case, we always have $|r| \geqslant 1$, so the only possibility is IV.
d). This curve passes through the origin every time $\theta$ is a multiple of $\pi$. There are no other places where it crosses the $x$-axis, so it must be V .
e). This crosses the $x$-axis at all multiples of $\pi$. At the odd multiples $r=-3$ and at the even multiples $r=5$. So the curve crosses the $x$-axis at the points $(3,0)$ and $(5,0)$ (and the origin). The only possibility is II.
f). As $\theta$ approaches zero this $r$ approaches $\infty$; and as $\theta$ approaches $\infty, r$ approaches zero from above. So this curve is a spiral and must be I.

