CALCULUS III FALL 1999
HOMEWORK 3 - ANSWERS

§9.5 Questions 2,8,12,32,38; 9.7 Questions 4,6,16,24

2. The required area is

1 /2 1 w/2
A:§/ @29d9:Z [629]

8. The curve is the limacon shown below. It is described once as 6 varies from 0 to 2.

The area it encloses is

27‘(’3

27 27
A= / 16(1—C089)2d9:8/ <§—2c059+1c0529) d9:8/ —df = 24r.

N =
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12.
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The loop in the first quadrant is described once as 6 varies from 0 to /3. So the required
area is
3 7!'/3 3 7T/3
A:—/ Sin239d0:—/ (1—C0869)d9:z.
2 Jo 4 J 4
32.

The intersection, in the first quadrant, corresponds to § = tan™! b/a. Notice that the area
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between the two curves is given by the sum

1 tan"'b/a 1 /2
A:—/ a2sin29d9+—/ b2 cos? 6 db
0 t

an—'b/a

a2 tan"1b/a b2 /2
:—/ (1 —cos20)df + — (14 cos 20) db
4 0 tan—1b/a
a® [t 4 b ab ] b? [7‘[‘ tan-1 b ab
= —|tan™ " — — —|= —tan™" — —
4 a a?+ b2 412 a a?+0b?
— b w?  ab
= tan~! = 4 — — —.
4 a 8 4

It’s clear from the original problem that this answer should be symmetric in a and b; you
should make use of various trigonometric identities to check that is indeed the case.

38.
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The intersections occur when tan3f = 1. Each curve is described once as 6 varies
from 0 to m and so we seek the values of € in [0, 7] with tan30 = 1. These are =
7 /12, 5w /12, 3w /4. These values show that points of intersection have polar coordinates
(1/V/2,7/12), (—1/v/2,57/12), (1/V/2,37/4). In addition, the origin is a point of inter-

section.

4. We first assume the directrix is £ = 4 and the eccentricity e = 1/2. This yields the polar
equation 7 = 2/(14 (cosf)/2) = 4/(2+ cos@). The required ellipse is obtained by rotating



16.

24.
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this one clockwise about the origin through /2, so its equation is

4 4
"= 24 cos(f +7/2) 2—sinf’

. The directrix is the horizontal line y = 2. First we assume the directrix is = 2, the

ellipse would then have polar equation 7 = 6/(5+3 cos #). So the required ellipse has polar

equation
6 6

" T 5+ 3cos(0—7/2)  5+3sinf’

The equation can be rewritten as

8/3
1+ (1/3)cosf

T =

from which it is clear that the eccentricity is 1/3 and therefore this is the equation of an
ellipse. We also note that the directrix has equation x = 8 (because d = 8).
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For the first curve, we have

dr _ csinf  rsinf
dd  (14+cosh)2 1+cosf’
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and for the second

@ _ rsin @
d)  1—cosf’

The slope of the tangent to the first curve is given by

dy _ rcosf + (rsin®0) /(1 + cos )

__1+cos€

dr  —rsinf + (rsinfcosf)/(1+ cosb)
A similar calculation for the second curve yields

dy 1—cosf
dr  sinf

sin
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The product of these slopes is —1 and so the curves are orthogonal at any point of inter-

section.

5.



