
CALCULUS III FALL 1999

HOMEWORK 3 { ANSWERS

x9.5 Questions 2,8,12,32,38; x9.7 Questions 4,6,16,24
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8. The curve is the lima�con shown below. It is described once as � varies from 0 to 2�.
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12.
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The loop in the �rst quadrant is described once as � varies from 0 to �=3. So the required
area is
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32.
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The intersection, in the �rst quadrant, corresponds to � = tan�1 b=a. Notice that the area
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between the two curves is given by the sum

A =
1

2

Z
tan

�1 b=a

0

a2 sin2 � d� +
1

2

Z �=2

tan�1 b=a

b2 cos2 � d�

=
a2

4

Z
tan

�1 b=a

0

(1� cos 2�) d�+
b2

4

Z �=2

tan�1 b=a

(1 + cos 2�) d�

=
a2

4

h
tan�1

b

a
� ab

a2 + b2

i
+

b2

4

h�
2
� tan�1

b

a
� ab

a2 + b2

i

=
a2 � b2

4
tan�1

b

a
+

�b2

8
� ab

4
:

It's clear from the original problem that this answer should be symmetric in a and b; you
should make use of various trigonometric identities to check that is indeed the case.

38.
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The intersections occur when tan 3� = 1. Each curve is described once as � varies
from 0 to � and so we seek the values of � in [0; �] with tan 3� = 1. These are � =
�=12; 5�=12; 3�=4. These values show that points of intersection have polar coordinates
(1=

p
2; �=12); (�1=p2; 5�=12); (1=

p
2; 3�=4). In addition, the origin is a point of inter-

section.

4. We �rst assume the directrix is x = 4 and the eccentricity e = 1=2. This yields the polar
equation r = 2=(1+ (cos �)=2) = 4=(2+cos �). The required ellipse is obtained by rotating
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this one clockwise about the origin through �=2, so its equation is
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6. The directrix is the horizontal line y = 2. First we assume the directrix is x = 2, the
ellipse would then have polar equation r = 6=(5+3 cos �). So the required ellipse has polar
equation
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6
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16. The equation can be rewritten as

r =
8=3

1 + (1=3) cos �

from which it is clear that the eccentricity is 1=3 and therefore this is the equation of an
ellipse. We also note that the directrix has equation x = 8 (because d = 8).

-4 -2 2 4 6 8

-4

-3

-2

-1

1

2

3

4

24. For the �rst curve, we have
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and for the second
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The slope of the tangent to the �rst curve is given by
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A similar calculation for the second curve yields
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The product of these slopes is �1 and so the curves are orthogonal at any point of inter-
section.


