$\S 9.5$ Questions 2,8,12,32,38; $\S 9.7$ Questions 4,6,16,24
2. The required area is

$$
A=\frac{1}{2} \int_{-\pi / 2}^{\pi / 2} e^{2 \theta} d \theta=\frac{1}{4}\left[e^{2 \theta}\right]_{-\pi / 2}^{\pi / 2}=\frac{1}{4}\left(e^{\pi}-e^{-\pi}\right)
$$

8. The curve is the limaçon shown below. It is described once as θ varies from 0 to 2π.

The area it encloses is

$$
A=\frac{1}{2} \int_{0}^{2 \pi} 16(1-\cos \theta)^{2} d \theta=8 \int_{0}^{2 \pi}\left(\frac{3}{2}-2 \cos \theta+\frac{1}{2} \cos 2 \theta\right) d \theta=8 \int_{0}^{2 \pi} \frac{3}{2} d \theta=24 \pi
$$

12.

The loop in the first quadrant is described once as θ varies from 0 to $\pi / 3$. So the required area is

$$
A=\frac{3}{2} \int_{0}^{\pi / 3} \sin ^{2} 3 \theta d \theta=\frac{3}{4} \int_{0}^{\pi / 3}(1-\cos 6 \theta) d \theta=\frac{\pi}{4} .
$$

32.

The intersection, in the first quadrant, corresponds to $\theta=\tan ^{-1} b / a$. Notice that the area
between the two curves is given by the sum

$$
\begin{aligned}
A & =\frac{1}{2} \int_{0}^{\tan ^{-1} b / a} a^{2} \sin ^{2} \theta d \theta+\frac{1}{2} \int_{\tan ^{-1} b / a}^{\pi / 2} b^{2} \cos ^{2} \theta d \theta \\
& =\frac{a^{2}}{4} \int_{0}^{\tan ^{-1} b / a}(1-\cos 2 \theta) d \theta+\frac{b^{2}}{4} \int_{\tan ^{-1} b / a}^{\pi / 2}(1+\cos 2 \theta) d \theta \\
& =\frac{a^{2}}{4}\left[\tan ^{-1} \frac{b}{a}-\frac{a b}{a^{2}+b^{2}}\right]+\frac{b^{2}}{4}\left[\frac{\pi}{2}-\tan ^{-1} \frac{b}{a}-\frac{a b}{a^{2}+b^{2}}\right] \\
& =\frac{a^{2}-b^{2}}{4} \tan ^{-1} \frac{b}{a}+\frac{\pi b^{2}}{8}-\frac{a b}{4} .
\end{aligned}
$$

It's clear from the original problem that this answer should be symmetric in a and b; you should make use of various trigonometric identities to check that is indeed the case.
38.

The intersections occur when $\tan 3 \theta=1$. Each curve is described once as θ varies from 0 to π and so we seek the values of θ in $[0, \pi]$ with $\tan 3 \theta=1$. These are $\theta=$ $\pi / 12,5 \pi / 12,3 \pi / 4$. These values show that points of intersection have polar coordinates $(1 / \sqrt{2}, \pi / 12),(-1 / \sqrt{2}, 5 \pi / 12),(1 / \sqrt{2}, 3 \pi / 4)$. In addition, the origin is a point of intersection.
4. We first assume the directrix is $x=4$ and the eccentricity $e=1 / 2$. This yields the polar equation $r=2 /(1+(\cos \theta) / 2)=4 /(2+\cos \theta)$. The required ellipse is obtained by rotating
this one clockwise about the origin through $\pi / 2$, so its equation is

$$
r=\frac{4}{2+\cos (\theta+\pi / 2)}=\frac{4}{2-\sin \theta}
$$

6. The directrix is the horizontal line $y=2$. First we assume the directrix is $x=2$, the ellipse would then have polar equation $r=6 /(5+3 \cos \theta)$. So the required ellipse has polar equation

$$
r=\frac{6}{5+3 \cos (\theta-\pi / 2)}=\frac{6}{5+3 \sin \theta} .
$$

16. The equation can be rewritten as

$$
r=\frac{8 / 3}{1+(1 / 3) \cos \theta}
$$

from which it is clear that the eccentricity is $1 / 3$ and therefore this is the equation of an ellipse. We also note that the directrix has equation $x=8$ (because $d=8$).

24. For the first curve, we have

$$
\frac{d r}{d \theta}=\frac{c \sin \theta}{(1+\cos \theta)^{2}}=\frac{r \sin \theta}{1+\cos \theta}
$$

and for the second

$$
\frac{d r}{d \theta}=-\frac{r \sin \theta}{1-\cos \theta} .
$$

The slope of the tangent to the first curve is given by

$$
\frac{d y}{d x}=\frac{r \cos \theta+\left(r \sin ^{2} \theta\right) /(1+\cos \theta)}{-r \sin \theta+(r \sin \theta \cos \theta) /(1+\cos \theta)}=-\frac{1+\cos \theta}{\sin \theta}
$$

A similar calculation for the second curve yields

$$
\frac{d y}{d x}=\frac{1-\cos \theta}{\sin \theta}
$$

The product of these slopes is -1 and so the curves are orthogonal at any point of intersection.

