10. The y-axis is the major axis of this ellipse and so its focis are on this axis. The eccentricity satisfies $4=25\left(1-e^{2}\right)$ and so $e=\sqrt{21} / 5$. The foci are therefore at $(0, \pm \sqrt{21})$ and the vertices are at $(0, \pm 5)$. The ellipse looks like

11. The major axis of this hyperbola is the y-axis and so its foci are on this axis. The eccentricity satisfies $144=25\left(1-e^{2}\right)$ and so $e=13 / 5$. The foci are therefore at $(0, \pm 13)$ and the vertices at $(0, \pm 5)$. The asymptotes are $y= \pm 5 x / 12$. The hyperbola looks like

12. First we assume that the foci are at $(0,0)$ and $(-2 \sqrt{2}, 0)$ and that the major axis is horizontal with length 4 . This is just a rotation and translation of the required ellipse. We have $a=2$ and $a e=\sqrt{2}$ which gives $e=1 / \sqrt{2}$ and $\ell=a(1-1 / 2)=1$. So the polar equation of this ellipse is

$$
r=\frac{1}{1+(\cos \theta) / \sqrt{2}}
$$

Applying a rotation of $\pi / 4$ about the origin will result in an ellipse with foci at the origin and $(-2,-2)$. This ellipse will have polar equation

$$
r=\frac{1}{1+(\cos (\theta-\pi / 4)) / \sqrt{2}}=\frac{2}{2+\cos \theta+\sin \theta} .
$$

The cartesian equivalent is obtained by multiplying the right side numerator and denominator by r. This gives $2 \sqrt{x^{2}+y^{2}}+x+y=2$. Finally, we translate 1 unit to the right and 1 unit vertically to obtain the desired ellipse. This must have equation

$$
2 \sqrt{(x-1)^{2}+(y-1)^{2}}+(x-1)+(y-1)=2
$$

which is equivalent to $3 x^{2}-2 x y+3 y^{2}=8$.
16.

$$
a_{n}=\frac{4 n-3}{3 n+4}=\frac{4-3 / n}{3+4 / n} \rightarrow \frac{4}{3} \quad \text { as } n \rightarrow \infty
$$

18.

$$
a_{n}=\frac{n^{1 / 3}+n^{1 / 4}}{n^{1 / 2}+n^{1 / 5}}=\frac{n^{-1 / 6}+n^{-1 / 4}}{1+n^{-3 / 10}} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

22. $a_{n}=\sin (n \pi / 2)$ and so $a_{n}=0$ for even n. For odd n, we note that $\left|a_{n}\right|=1$ and so the sequence diverges.
23.

$$
a_{n}=\ln (n+1)-\ln n=\ln \frac{n+1}{n}=\ln \left(1+\frac{1}{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

38.

$$
\begin{aligned}
a_{n} & =(\sqrt{n+1}-\sqrt{n}) \sqrt{n+\frac{1}{2}}=\frac{\sqrt{n+1 / 2}}{\sqrt{n+1}+\sqrt{n}} \\
& =\frac{\sqrt{1+1 / 2 n}}{\sqrt{1+1 / n}+1} \rightarrow \frac{1}{2} \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

