CALCULUS III FALL 1999 HOMEWORK 5 – ANSWERS

§10.1 Questions 46,52,54,60

46.

$$a_n = \left(3^n + 5^n\right)^{1/n} = 5\left(1 + \left(\frac{3}{5}\right)^n\right)^{1/n} \to 5 \qquad {
m as} \ n \to \infty.$$

The same idea can be used to show, more generally, that $(a^n + b^n)^{1/n} \to \max\{a, b\}$.

52. $a_{n+1} \leq a_n \iff 5^n \leq 5^{n+1}$, which is clearly true and so the sequence is decreasing.

54.

$$a_{n+1}-a_n=rac{3n+7}{2n+7}-rac{3n+4}{2n+5}=rac{7}{(2n+7)(2n+5)}>0,$$

and so the sequence is increasing.

60. We see that $a_{n+1}^2 - a_n^2 = 2 + a_n - a_n^2 = (2 - a_n)(1 + a_n)$. It follows that $a_{n+1} > a_n$ if $-1 < a_n < 2$ (note that we clearly have $a_n \ge 0$ for all n). Next note that $4 - a_{n+1}^2 = 2 - a_n$ and so, if $a_n < 2$, then $a_{n+1} < 2$. It therefore follows that $a_n < 2$ for all n since $a_1 < 2$. Our previous observations now show that the sequence is increasing and $0 \le a_n < 2 < 3$ for all n. It follows that the sequence converges (Theorem 10 of the book). If ℓ is its limit then ℓ must satisfy $\ell = \sqrt{2 + \ell}$ which gives $(\ell - 2)(\ell + 1) = 0$. Hence $\ell = -1$ or 2. Each term of the sequence is non-negative and so the limit cannot be -1. It follows that $a_n \to 2$ as $n \to \infty$.