CALCULUS III FALL 1999
HOMEWORK 6 - ANSWERS

§10.2 Questions 14,20,26,58; §10.3 Questions 8,10,20,26
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20. Note that n?/(3(n + 1)(n + 2)) — 1/3 as n — oo and so the series diverges.

26. The partial sums are given by
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as N — oo. It follows that >.>7  1/(4n* — 1) =1/2.

58. Note that CD = bsinf), DE = C'Dsinf and so on. The required sum is therefore

= .. B 1 _ bsind
bnzzzlsm 9_b<1—sin9_1)_ 1 —sinf’

8. The function f(r) = 1/(x% — 1) is clearly positive and decreasing on the interval
[2,00), so we will apply the integral test.
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as A — oo. It follows that the series converges.
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We put f(z) = x/2% and note that f'(x) = (1 — x1In2)/2%. Consequently f is
positive and decreasing on [2,00), so we may apply the integral test.
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So the series converges.

The function f(z) = 1/(zInz(In(Inz))P) is clearly positive and decreasing on [3, co)
if p> 0. If p# 1, integration gives
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This limit exists precisely when p > 1. In case p = 1, we have
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which is infinite. If p < 0, the terms of the series do not converge to 0. Putting all
this together shows that the series converges precisely when p > 1.

In the usual notation, we have
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So we choose n such that 1/4n* < 0.0001. This requires n > 8. Consequently
sg is a sufficiently good estimate of the sum. We have sg ~ 1.03688... and so
> 1 1/n® = 1.037 to three places of decimals.



