
CALCULUS III FALL 1999

HOMEWORK 6 { ANSWERS

x10.2 Questions 14,20,26,58; x10.3 Questions 8,10,20,26
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20. Note that n2=(3(n+ 1)(n+ 2))! 1=3 as n!1 and so the series diverges.

26. The partial sums are given by
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as N !1. It follows that
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58. Note that CD = b sin �; DE = CD sin � and so on. The required sum is therefore
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8. The function f(x) = 1=(x2 � 1) is clearly positive and decreasing on the interval
[2;1), so we will apply the integral test.
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as A!1. It follows that the series converges.
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10. We put f(x) = x=2x and note that f 0(x) = (1 � x ln 2)=2x. Consequently f is
positive and decreasing on [2;1), so we may apply the integral test.
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So the series converges.

20. The function f(x) = 1=(x lnx(ln(lnx))p) is clearly positive and decreasing on [3;1)
if p > 0. If p 6= 1, integration gives
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This limit exists precisely when p > 1. In case p = 1, we have
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which is in�nite. If p 6 0, the terms of the series do not converge to 0. Putting all
this together shows that the series converges precisely when p > 1.

26. In the usual notation, we have
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So we choose n such that 1=4n4 < 0:0001. This requires n > 8. Consequently
s8 is a suÆciently good estimate of the sum. We have s8 ' 1:03688 : : : and soP
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n=1 1=n
5 = 1:037 to three places of decimals.


