CALCULUS III
$\S 10.2$ Questions $14,20,26,58 ; \S 10.3$ Questions $8,10,20,26$
14.

$$
\sum_{n=1}^{\infty} \frac{1}{e^{2 n}}=\sum_{n=0}^{\infty} \frac{1}{e^{2 n}}-1=\frac{1}{1-1 / e^{2}}-1=\frac{1}{e^{2}-1}
$$

20. Note that $n^{2} /(3(n+1)(n+2)) \rightarrow 1 / 3$ as $n \rightarrow \infty$ and so the series diverges.
21. The partial sums are given by

$$
\begin{aligned}
s_{N} & =\sum_{n=1}^{N} \frac{1}{4 n^{2}-1}=\frac{1}{2} \sum_{n=1}^{N}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right) \\
& =\frac{1}{2}\left[\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\cdots+\left(\frac{1}{2 N-1}-\frac{1}{2 N+1}\right)\right]=\frac{1}{2}\left[1-\frac{1}{2 N+1}\right] \rightarrow \frac{1}{2}
\end{aligned}
$$

as $N \rightarrow \infty$. It follows that $\sum_{n=1}^{\infty} 1 /\left(4 n^{2}-1\right)=1 / 2$.
58. Note that $C D=b \sin \theta, D E=C D \sin \theta$ and so on. The required sum is therefore

$$
b \sum_{n=1}^{\infty} \sin ^{n} \theta=b\left(\frac{1}{1-\sin \theta}-1\right)=\frac{b \sin \theta}{1-\sin \theta}
$$

8. The function $f(x)=1 /\left(x^{2}-1\right)$ is clearly positive and decreasing on the interval $[2, \infty)$, so we will apply the integral test.
$\int_{2}^{\infty} \frac{d x}{x^{2}-1}=\frac{1}{2} \lim _{A \rightarrow \infty} \int_{2}^{A}\left(\frac{1}{x-1}-\frac{1}{x+1}\right) d x=\frac{1}{2} \lim _{A \rightarrow \infty}\left[\ln \frac{A-1}{A+1}-\ln \frac{1}{3}\right] \rightarrow \frac{1}{2} \ln 3$,
as $A \rightarrow \infty$. It follows that the series converges.
9. We put $f(x)=x / 2^{x}$ and note that $f^{\prime}(x)=(1-x \ln 2) / 2^{x}$. Consequently f is positive and decreasing on $[2, \infty)$, so we may apply the integral test.

$$
\begin{aligned}
\int_{2}^{\infty} \frac{x d x}{2^{x}} & =\lim _{A \rightarrow \infty}\left(\left[-\frac{x}{2^{x} \ln 2}\right]_{2}^{A}+\frac{1}{\ln 2} \int_{2}^{A} 2^{-x} d x\right) \\
& =\frac{1}{2}\left(\frac{1}{\ln 2}+\frac{1}{(\ln 2)^{2}}\right) \quad \text { because } \lim _{A \rightarrow \infty} \frac{A}{2^{A}}=0
\end{aligned}
$$

So the series converges.
20. The function $f(x)=1 /\left(x \ln x(\ln (\ln x))^{p}\right)$ is clearly positive and decreasing on $[3, \infty)$ if $p>0$. If $p \neq 1$, integration gives

$$
\int_{3}^{\infty} \frac{d x}{x \ln x(\ln (\ln x))^{p}}=\lim _{A \rightarrow \infty}\left[\frac{(\ln \ln x)^{-p+1}}{-p+1}\right]_{3}^{A}
$$

This limit exists precisely when $p>1$. In case $p=1$, we have

$$
\int_{3}^{\infty} \frac{d x}{x \ln x \ln (\ln x)}=\lim _{A \rightarrow \infty}[\ln \ln x]_{3}^{A}
$$

which is infinite. If $p \leqslant 0$, the terms of the series do not converge to 0 . Putting all this together shows that the series converges precisely when $p>1$.
26. In the usual notation, we have

$$
R_{n}=\sum_{k=n+1}^{\infty} \frac{1}{k^{5}}<\int_{n}^{\infty} x^{-5} d x=\lim _{A \rightarrow \infty}\left[-\frac{1}{4 x^{4}}\right]_{n}^{A}=\frac{1}{4 n^{4}}
$$

So we choose n such that $1 / 4 n^{4}<0.0001$. This requires $n \geqslant 8$. Consequently s_{8} is a sufficiently good estimate of the sum. We have $s_{8} \simeq 1.03688 \ldots$ and so $\sum_{n=1}^{\infty} 1 / n^{5}=1.037$ to three places of decimals.

