CALCULUS III
$\S 10.8$ Questions 6,14,22,28; §10.9 Questions 2,10,20,28,36
6. The ratio test gives

$$
\frac{|x|^{n+1}}{(n+1)^{2}} \frac{n^{2}}{|x|^{n}}=\frac{n^{2}|x|}{(n+1)^{2}} \rightarrow|x|
$$

So the radius of convergence is 1 . At $x= \pm 1$ the corresponding absolute series is $\sum_{n=1}^{\infty} 1 / n^{2}$ which converges. So the interval of convergence is $[-1,1]$.
14. The ratio test gives

$$
\frac{\sqrt{n+1}|3 x+2|^{n+1}}{\sqrt{n}|3 x+2|^{n}} \rightarrow|3 x+2| .
$$

So this series converges when $|3 x+2|<1$ which means $|x+2 / 3|<1 / 3$. So the radius of convergence is $1 / 3$. At $x=-1$ or $-1 / 3$ the terms of the series do not approach zero. So the interval of convergence is $(-1,-1 / 3)$.
22. The ratio test gives

$$
\frac{|x+1|^{n+1}}{(n+1)(n+2)} \frac{n(n+1)}{|x+1|^{n}} \rightarrow|x+1|
$$

So the radius of convergence is 1 . At $x=-2,0$ the corresponding absolute series is $\sum_{n=1}^{\infty} 1 /(n(n+1))$ which is convergent (by comparison with $\sum_{n=1}^{\infty} 1 / n^{2}$). So the interval of convergence is $[-2,0]$.
28. The ratio test gives

$$
\frac{2.4 .6 \ldots(2 n+2)|x|}{1.3 .5 \ldots(2 n+1)} \frac{1.3 .5 \ldots(2 n-1)}{2.4 .6 \ldots(2 n)}=\frac{(2 n+2)|x|}{2 n+1} \rightarrow|x|
$$

So the radius of convergence is one. Notice that

$$
\frac{2 \cdot 4.6 \ldots(2 n)}{1.3 .5 \ldots(2 n-1)}=\frac{2}{1} \frac{4}{3} \frac{6}{5} \cdots \frac{2 n}{2 n-1}>1 \quad \text { for all } n
$$

So, at $x= \pm 1$, the terms of the series do not converge to zero. It follows that the series diverges at $x= \pm 1$ and so the interval of converegnce is $(-1,1)$.
2.

$$
\frac{x}{1-x}=x \frac{1}{1-x}=x \sum_{n=0}^{\infty} x^{n}=\sum_{n=0}^{\infty} x^{n+1}
$$

with radius of convergence 1 . The series clearly diverges at $x= \pm 1$, so the interval of convergence is $(-1,1)$.
10.

$$
\begin{aligned}
f(x) & =\frac{x}{x^{2}-3 x+2}=\frac{x}{x-2}-\frac{x}{x-1}=\frac{x}{1-x}-\frac{x}{2(1-x / 2)} \\
& =\sum_{n=0}^{\infty} x^{n+1}-\frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{n+1}}{2^{n}}
\end{aligned}
$$

these series have respective radii of convergence 1 and 2

$$
=\sum_{n=0}^{\infty}\left(1-\frac{1}{2^{n+1}}\right) x^{n+1}
$$

We require both the above series to converge and so the overall radius of convergence is 1 . At $x= \pm 1$ the terms of the series do not converge to zero and so the interval of convergence is $(-1,1)$.
20.

$$
f(x)=\frac{1}{x^{2}+25}=\frac{1}{25\left(1-\left(-(x / 5)^{2}\right)\right)}=\frac{1}{25} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{5^{2 n}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{5^{2 n+2}}
$$

which has interval of convergence $(-5,5)$. The first few Maclaurin polynomials are graphed below. Notice that, as n increases, the polynomials provide increasingly better aproximations to $f(x)$. The function f is shown in black.

The degree 2, 4, 6 approximations have colours red, green blue respectively.
28.

$$
\frac{1}{1+x^{6}}=\frac{1}{1-\left(-x^{6}\right)}=\sum_{n=0}^{\infty}(-1)^{n} x^{6 n}
$$

Consequently

$$
\int_{0}^{1 / 2} \frac{d x}{1+x^{6}}=\left[\sum_{n=0}^{\infty} \frac{(-1)^{n}}{6 n+1} x^{6 n+1}\right]_{0}^{1 / 2}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(6 n+1) 2^{6 n+1}}
$$

This is an alternating series of terms decreasing to zero. So, in order to get the required accuracy, we choose n so that $(6 n+1) 2^{6 n+1}>10^{6}$. This is satisfied when $n=3$. So the required estimate is given by

$$
\int_{0}^{1 / 2} \frac{d x}{1+x^{6}}=\frac{1}{2}-\frac{1}{7.2^{7}}+\frac{1}{13.2^{13}} \simeq 0.498893
$$

36. This question is based on the fact that $\sum_{n=0}^{\infty} x^{n}=1 /(1-x)$ if $|x|<1$.
(a)

$$
\sum_{n=1}^{\infty} n x^{n-1}=\frac{d}{d x} \sum_{n=0}^{\infty} x^{n}=\frac{d}{d x} \frac{1}{1-x}=\frac{1}{(1-x)^{2}} \quad \text { if }|x|<1
$$

(b)
(i)

$$
\sum_{n=1}^{\infty} n x^{n}=x \sum_{n=1}^{\infty} n x^{n-1}=\frac{x}{(1-x)^{2}} \quad \text { if }|x|<1
$$

(ii) The above series converges when $x=1 / 2$ and so $\sum_{n=1}^{\infty} n / 2^{n}=2$.
(c)
(i)

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) x^{n} & =x^{2} \sum_{n=2}^{\infty} n(n-1) x^{n-2}=x^{2} \frac{d}{d x} \sum_{n=1}^{\infty} n x^{n-1} \\
& =x^{2} \frac{d}{d x} \frac{1}{(1-x)^{2}}=\frac{2 x^{2}}{(1-x)^{3}} \quad \text { if }|x|<1
\end{aligned}
$$

(ii) The above series converges when $x=1 / 2$ and so $\sum_{n=2}^{\infty}\left(n^{2}-n\right) / 2^{n}=4$.
(iii)

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}=\sum_{n=1}^{\infty} \frac{n^{2}-n}{2^{n}}+\sum_{n=1}^{\infty} \frac{n}{2^{n}}=4+2=6
$$

