CALCULUS III
FALL 1999
HOMEWORK 9 - ANSWERS

§10.10 Questions $8,12,24,34,38,44$

8. Note that

$$
\begin{array}{rlrl}
f^{(4 n)}(-\pi / 4) & =\cos (-\pi / 4)=1 / \sqrt{2}, & & f^{(4 n+1)}(-\pi / 4)=-\sin (-\pi / 4)=1 / \sqrt{2} \\
f^{(4 n+2)}(-\pi / 4) & =-\cos (-\pi / 4)=-1 / \sqrt{2}, & f^{(4 n+3)}(-\pi / 4)=\sin (-\pi / 4)=-1 / \sqrt{2}
\end{array}
$$

It follows that

$$
\cos x=\frac{1}{\sqrt{2}}+\frac{x+\pi / 4}{\sqrt{2}}-\frac{(x+\pi / 4)^{2}}{2 \sqrt{2}}-\frac{(x+\pi / 4)^{3}}{6 \sqrt{2}}+\cdots
$$

12. We have $f^{\prime}(x)=1 / x, f^{\prime \prime}(x)=-1 / x^{2}$, in general

$$
f^{(n)}(x)=\frac{(-1)^{n+1}(n-1)!}{x^{n}} \quad \text { and so } \quad f^{(n)}(2)=\frac{(-1)^{n+1}(n-1)!}{2^{n}}
$$

Hence

$$
\ln x=\ln 2+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 2^{n}}(x-2)^{n}
$$

24.

$$
\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)=\frac{1}{2}\left(1+\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 x)^{2 n}}{(2 n)!}\right)=\frac{1}{2}\left(1+\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n} x^{2 n}}{(2 n)!}\right)
$$

34.

$$
\begin{aligned}
\int \frac{\sin x}{x} d x & =\int \frac{1}{x} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}=\int \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)(2 n+1)!}+c .
\end{aligned}
$$

38.

$$
\begin{aligned}
\int_{0}^{1 / 2} \cos x^{2} d x & =\int_{0}^{1 / 2} \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2}\right)^{2 n}}{(2 n)!} d x=\int_{0}^{1 / 2} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n}}{(2 n)!} d x \\
& =\left[\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+1}}{(4 n+1)(2 n)!}\right]_{0}^{1 / 2}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(4 n+1)(2 n)!2^{4 n+1}}
\end{aligned}
$$

This is an alternating series of terms decreasing to zero. So, in order to get the required accuracy, we choose n so that $(4 n+1)(2 n)!2^{4 n+1}>10^{3}$. This is satisfied when $n=2$. So the required estimate is given by

$$
\int_{0}^{1 / 2} \cos \left(x^{2}\right) d x=\frac{1}{2}-\frac{1}{10\left(2^{5}\right)} \simeq 0.497
$$

44.

$$
\begin{aligned}
e^{x} \ln (1-x) & =\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots\right)\left(-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots\right) \\
& =-x-\frac{3 x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{3}}{2}-\frac{x^{3}}{2}-\cdots=-x-\frac{3 x^{2}}{2}-\frac{4 x^{3}}{3}-\cdots
\end{aligned}
$$

All subsequent terms involve x^{4} and higher powers.

