CALCULUS III – ANSWERS TEST 2

FALL 1999

In order to get full credit, all answers must be accompanied by appropriate justifications.

1. Find the limits of the sequences whose n-th terms are as follows:

a)
$$a_n = \frac{n^2 - 1}{2n^2 + 10n + 3};$$
 b) $a_n = \left(\frac{n+5}{n}\right)^n;$ **c)** $a_n = (2^n + 3^n)^{1/n};$

$$\mathbf{b)} \quad a_n = \left(\frac{n+5}{n}\right)^n$$

c)
$$a_n = (2^n + 3^n)^{1/n}$$

$$\mathbf{d)} \quad a_n = \left(1 - \frac{1}{n^2}\right)^n.$$

(15 points)

a)

$$a_n = \frac{1 - 1/n^2}{2 + 10/n + 3/n^2} \to \frac{1}{2};$$

b)

$$a_n = \left(1 + \frac{5}{n}\right)^n \to e^5;$$

c)

$$a_n = 3\left(1 + \left(\frac{2}{3}\right)^n\right)^{1/n} \to 3;$$

d)

$$a_n = \left(1 - \frac{1}{n}\right)^n \left(1 + \frac{1}{n}\right)^n \to \frac{1}{e}e = 1.$$

2. Find the n-th partial sum of the series

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}.$$

Use this to find the sum of the series.

......

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= 1 - \frac{1}{n+1} \to 1.$$

3. Use the integral test to estimate the sum of the series

$$\sum_{k=1}^{\infty} \frac{1}{k^2},$$

accurate to one decimal place.

Put $f(x) = 1/x^2$ and note that f is positive and degreesing on [1, 20]. Conse

Put $f(x) = 1/x^2$ and note that f is positive and decreasing on $[1, \infty)$. Consequently,

$$R_n = \sum_{k=n+1}^{\infty} \frac{1}{k^2} \leqslant \int_n^{\infty} f(x) \, dx = \frac{1}{n}.$$

Therefore, if $s = \sum_{k=1}^{\infty} 1/k^2$, we have

$$\sum_{k=1} n \frac{1}{k^2} \leqslant s \leqslant \frac{1}{n} + \sum_{k=1} n \frac{1}{k^2}.$$

Using a calculator we get $1.558 \le s \le (1/11) + 1.558 = 1.649$. So, to one decimal place, we have s = 1.6.

4. Determine whether or not each of the following series converges:

$$\mathbf{a)} \quad \sum_{k=1}^{\infty} \left(\frac{1}{\sqrt{2}}\right)^k$$

a)
$$\sum_{k=1}^{\infty} \left(\frac{1}{\sqrt{2}}\right)^k$$
; b) $\sum_{k=1}^{\infty} \left(1 - \frac{1}{k}\right)^k$; c) $\sum_{k=1}^{\infty} \frac{1}{k^2 + 2k + 2}$.

c)
$$\sum_{k=1}^{\infty} \frac{1}{k^2 + 2k + 2}$$

(15 points)

- a) This is a geoemtric series with common ratio $1/\sqrt{2} < 1$ and is therefore convergent.
- **b)** Notice that $(1-1/k)^{-1} \to e^{-1} \neq 0$ as $k \to \infty$, and so the series diverges.
- c) Put $a_k = 1/(k^2 + 2k + 2)$ and $b_k = 1/k^2$ then $a_k/b_k \to 1$ as $k \to \infty$. Thus $\sum a_k$ and $\sum b_k$ either both converge or both diverge. The latter converges and so our series converges.
- 5. Determine whether or not each of the following series converges distinguishing between absolute and conditional convergence:

a)
$$\sum_{k=1}^{\infty} \frac{(-1)^k \sin k}{k^2}$$
; b) $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$; c) $\sum_{k=1}^{\infty} \frac{(k!)^2}{(2k)!}$.

$$\mathbf{b)} \quad \sum_{k=1}^{\infty} \frac{(-1)^k}{k}$$

c)
$$\sum_{k=1}^{\infty} \frac{(k!)^2}{(2k)!}$$

(20 points)

- a) Note that $|(-1)^k \sin k/k^2| \leq |1/k^2|$ and so the comparison test shows that the series converges absolutely.
- b) Note that |(-1)k/k| = 1/k and $\sum 1/k$ diverges. We may use the alternating series test since $1/k > 1/(k+1) \to 0$. Consequently the series converges conditionally.
- c) Using the ratio test, we have

$$\frac{((k+1)!)^2}{(2k+2)!} \frac{(2k)!}{(k!)^2} = \frac{(k+1)^2}{(2k+2)(2k+1)} \to \frac{1}{4} < 1.$$

It follows that the series converges (absolutely).

1.

6. Find the interval of convergence of each of the following power series:

a)
$$\sum_{k=0}^{\infty} \frac{k^2 x^k}{10^k}$$
; b) $\sum_{k=1}^{\infty} \frac{(x-1)^k}{\sqrt{k}}$.

(20 points)

.....

a) The ratio test gives

$$\frac{(k+1)^2|x|^{k+1}}{10^{k+1}} \frac{10^k}{k^2|x|^k} = \left(\frac{k+1}{k}\right)^2 \frac{|x|}{10} \to \frac{|x|}{10}.$$

So the series converges absolutely in (-10,10) and diverges when |x| > 10. When $x = \pm 10$ the series is $\sum_{k=0}^{\infty} k^2$ or $\sum_{k=0}^{\infty} (-1)^k k^2$. These both diverge since the terms of the series do not approach zero. So the interval of convergence is (-10,10).

b) The ratio test gives

$$\frac{|x-1|^{k+1}}{\sqrt{k+1}} \frac{\sqrt{k}}{|x-1|^k} = |x-1| \sqrt{\frac{k}{k+1}} \to |x-1|.$$

Consequently the series converges absolutely in (0,2) and diverges when |x-1| > 1. When x = 0 the series is $\sum (-1)^k / \sqrt{k}$ which converges, by the alternating series test. When x = 2 the series is $\sum 1/\sqrt{k}$ which diverges. So the interval of convergence is [0,2).