
CALCULUS III FALL 1999

REVIEW 2

0. Great 
eas have little 
eas upon their backs to bite 'em, and little 
eas have lesser

eas, and so ad in�nitum.

Augustus de Morgan

1. Find the following limits if they exist:

lim
n!1

2n2 � 1

3n2 + 15n� 2
; lim

n!1
(
p
n+ 1�pn� 1); lim

n!1

n!

nn
;

lim
n!1

(
p
n2 + n�

p
n2 + 1):

2. Do the same thing for the following:

lim
n!1

ln(2n)

ln(3n)
lim
n!1

n

p
n2 + n lim

n!1

n

p
an + bn lim

n!1

�(n)

n
;

where �(n) is the number of primes which divide n.

3. Give an example of a sequence that is:

(a) convergent but not monotonic
(b) bounded but not monotonic
(c) monotone but not convergent
(d) monotone decreasing and unbounded
(e) monotone decreasing and convergent
(f) unbounded but not monotone
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4. Show that the following sequences converge and �nd their limits:

a1 =
p
3; an+1 =

p
an + 2; a1 =

p
2; an+1 =

p
2an

5. Identify the function f(x) = limn!1(limk!1(cosn!�x)2k) - this is a little tricky,
but lots of fun.

6. Determine which of the following series are convergent:

1X
n=1

1
3
p
n2 � 1

1X
n=1

n2

n!

1X
n=1

lnn

n

1X
n=1

n2 � 1

n4 � 1

1X
n=1

sin
1

n

1X
n=1

5nn!

(2n)n

In the case of one of the convergent series above, estimate the sum accurately to 3
decimal places.

7. For which values of x do the following series converge?

1X
n=1

(sinx)n
1X
n=1

(1 + x)n
1X
n=1

1

(1� x)n
:

8. Determine which of the following series converge:

1X
n=1

(�1)n+1 1

n
p
n

1X
n=1

(�1)n+1n� 1

n

1X
n=1

n sin
1

n

1X
n=1

(�1)n+1p
n+ 1 +

p
n

9. Find the interval of convergence for each of the following power series:

1X
n=0

xn

n3 + 1

1X
n=0

(�2)n+1xn
2n+ 3

1X
n=0

3nx3n

(3n)!
:
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REVIEW 2 { ANSWERS

1.

2n2 � 1

3n2 + 15n� 2
! 2

3

p
n+ 1�pn� 1 =

1p
n+ 1 +

p
n� 1

! 0

n!

nn
=

1:2 : : : n

n : : : n
6

1

n
! 0

p
n2 + n�

p
n2 + 1 =

n� 1p
n2 + n+

p
n2 + 1

! 1

2
:

2.

ln(2n)

ln(3n)
=

ln 2 + lnn

ln 3 + lnn
! 1

n

p
n2 + n = n1=n(n+ 1)1=n = n1=n

�n+ 1

n

�1=n
n1=n ! e:

If a 6 b then

n

p
an + bn = b

�
1 +

�a
b

�n�1=n
! b; in general n

p
an + bn ! maxfa; bg:

Note that if �(n) =m then there arem primes p1; : : : ; pm which all divide n. Hence
p1 : : : pm 6 n, on the other hand p1 : : : pm > 2m. Hence m ln 2 6 lnn. Thus

�(n)

n
6

lnn

n ln 2
! 0;

by L'Hôpital's rule.

3. a) (�1)n=n b) (�1)n c) n d) �n e) 1=n f) (�1)nn.
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4. a2n+1 � a2n = �(an � 2)(an + 1) and a2n+1 � 4 = an � 2. So 0 < an < 2 for
all n since a1 < 2. Furthermore an+1 > an for all n and so we have a bounded
monotonic sequence. It follows that the sequence is convergent and the limit `
satis�es `2 = `+ 2. This implies ` = �1 or 2. Clearly the limit is 2.
a2n+1 � a2n = an(2 � an) and a2n+1 � 4 = 2(an � 2). So 0 < an < 2 for all n since
a1 < 2. Furthermore an+1 > an for all n and so we have a bounded monotonic
sequence. It follows that the sequence is convergent and the limit ` satis�es `2 = 2`.
This implies ` = 0 or 2. Clearly the limit is 2.

5. If x is rational, then n!�x is an integer multiple of � for all su�ciently large values
of n. Hence (cosn!�x)2k = 1 for all k and all su�ciently large n. Hence f(x) = 1
if x is rational. If x is irrational, then j cosn!�xj2k < 1 for each n. Hence f(x) = 0
if x is irrational.

6. Comparison with
P

1=n2=3 shows that the series diverges.

(n+)2n!

(n + 1)!n2
=

n+ 1

n2
! 0;

so the ratio test shows we have convergence.

lnn

n
>

1

n
; for su�ciently large n

so the comparison test shows that the series diverges.

n2 � 1

n4 � 1
=

1

n2 + 1
;

so comparison with
P

1=n2 shows that this converges.

1=n

sin1=n
! 1;

so the comparison test shows that this series diverges.

5n+1(n+ 1)!(2n)n

(2n+ 2)n+15nn!
=

5nn

2(n+ 1)n
! 5

2e
< 1;

So the ratio test shows that the series converges.
We'll estimate

P
1

n=2(n
2 � 1)=(n4 � 1) =

P
1

n=2 1=(n
2 + 1). We can apply the

integral test to this to see that

Rn 6

Z
1

n

dx

1 + x2
= lim

A!1

h
tan�1 x

iA
n
=

�

2
� tan�1 n = tan�1

1

n
:
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So we choose n with tan�1(1=n) < 0:0005. We know that tan�1 x < x so it su�ces
to choose n = 2; 000. The required estimate is s2;000 = 0:576.

7. For convergence, we require j sinxj < 1, which means x is not an odd multiple of
�. For the second series, we require j1 + xj < 1 which means x is in the interval
(�2; 0). Finally, we require j1 � xj > 1 for convergence. This means either x < 0
or x > 2.

8. The corresponding absolute series is
P
1

n=1 1=n
3=2 which converges. So we have

absolute convergence.
This series diverges since its terms do not approach zero.
Note that n sin(1=n)! 1 and so this series diverges too.
This series does not converge absolutely, by comparison with

P
1

n=1 1=
p
n. On the

other hand, the alternating series test can be applied to show the series converges
conditionally.

9. We use the ratio test in all three cases. For the �rst series, we have

jxjn+1(n3 + 1)

((n + 1)3 + 1)jxjn =
jxj(n3 + 1)

(n+ 1)3 + 1
! jxj:

When x = �1, the corresponding series of absolute values isP1n=1 1=(n3+1) which
converges. So the interval of convergence is [�1; 1].

For the second series,

2n+2jxjn+1(2n + 3)

(2n+ 5)2n+1jxjn =
2jxj(2n+ 3)

2n+ 5
! 2jxj:

When x = 1=2, the series is �2P1n=1(�1)n=(2n + 3) which converges (alternating
series test). When x = �1=2 the series is �2P1n=1 1=(2n + 3) which diverges. So
the interval of convergence is (�1=2; 1=2].

For the third series

3n+1jxj3n+3(3n)!
(3n+ 3)!3njxj3n =

3jxj3
(3n + 3)(3n + 2)(3n+ 1)

! 0:

So the series converges for all x.


