CALCULUS III FALL 1999
REVIEW 2

. Great fleas have little fleas upon their backs to bite ’em, and little fleas have lesser
fleas, and so ad infinitum.

AUGUSTUS DE MORGAN

. Find the following limits if they exist:

n? —1 !
" lim (Vn+1—+vn—1), lim n—,

11T
n—oo 3n2 + 15n — 2’ n—00 n—oco N

li_)m (\/n2+n—\/n2—|—1).

. Do the same thing for the following:

In(2
lim n(2n) Iim vn?24+n lim Va® + b» lim M,

n—oo ln(?)n) n—oo n—oo n—oo M

where a(n) is the number of primes which divide n.

. Give an example of a sequence that is:

(a) convergent but not monotonic

(b) bounded but not monotonic

(¢) monotone but not convergent

(d) monotone decreasing and unbounded
(e) monotone decreasing and convergent
(f) unbounded but not monotone
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. Show that the following sequences converge and find their limits:

a =3, nt1 = Van + 2; ar = V2, ant1 = V2anp

. Identify the function f(z) = lim,—eo(limg_ oo (cos nlmz)?¥) - this is a little tricky,
but lots of fun.

. Determine which of the following series are convergent:

>0 >0 >0 >0 >0 >0
1 n? Inn n? —1 .1
— — — sin —

n=1 n=1 n=1

5%n!
(2n)"

In the case of one of the convergent series above, estimate the sum accurately to 3
decimal places.

. For which values of = do the following series converge?

Z(sinx)" Z(l—l—x)" Zﬁ

. Determine which of the following series converge:

> 1 > n—1 = .1 = (=1)nt!
§ B L § _prttl__— § nsin — § S S
n:l( ) ny/n n:l( ) n — n ot Vn+1l+yn

. Find the interval of convergence for each of the following power series:

0 n 0 (_2)n—|—1xn 0 3”1’3”

Zn3—|—1 Z In+3 Z(?)n)’

n=0 n=0 n=0
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REVIEW 2 - ANSWERS

on? —1 _>2
3n2 4 15n —2 3
Vn+l—vVn—-1= ! — 0
\/n—l—l—l—\/n—l
n! 1.2...n 1
— = <——=0

n—1

%
V2 +n+vn?+1

N | —

VnZ4+n—vn2+1=

In(2n) _In241Inn
In(3n)  In3+1lnn

1\1/n
n/nz_l_n:nl/n(n_l_l)l/n :nl/n<n‘|‘ > nl/n s o
n

If @ < b then

— 1

Van +bn = b <1 + <%> n>1/n — b, in general Van + v — max{a,b}.

Note that if «(n) = m then there are m primes py, ..., pp, which all divide n. Hence
P1 ... pm < n, on the other hand py...p, > 2™. Hence mIn2 < Inn. Thus

a(n) Inn

n o nln?2

— 0,

by L’Hopital’s rule.

3. a)(=1)"/nb)(=1)"¢)nd) —ne)l/nf) (-1)"n.
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. ai_i_l—a% = —(an — 2)(a, + 1) and ai+1—4 =a, — 2. So0 < a, < 2 for
all n since a; < 2. Furthermore a,41 > a, for all n and so we have a bounded
monotonic sequence. It follows that the sequence is convergent and the limit ¢
satisfies (2 = { + 2. This implies £ = —1 or 2. Clearly the limit is 2.

ai_i_l —a? = ap(2 — a,) and ai_i_l —4 =2(a, —2). So0 < a, <2 for all n since
a1 < 2. Furthermore a,4+1 > a, for all n and so we have a bounded monotonic
sequence. It follows that the sequence is convergent and the limit ¢ satisfies {2 = 2(.

This implies £ = 0 or 2. Clearly the limit is 2.

. If z is rational, then n!ra is an integer multiple of 7 for all sufficiently large values
of n. Hence (cosn!rz)?* =1 for all k and all sufficiently large n. Hence f(z) = 1
if z is rational. If @ is irrational, then |cosn!mz|** < 1 for each n. Hence f(z) =0
if = is irrational.

. Comparison with 3" 1/n?/% shows that the series diverges.

(n+)2n! _n+1

= —0
(n+1)n? n? ’
so the ratio test shows we have convergence.
Inn 1
— > -, for sufficiently large n
n n

so the comparison test shows that the series diverges.

n2—1_ 1
nt*—1 n241’

so comparison with Y 1/n? shows that this converges.

1/n

sinl/n

so the comparison test shows that this series diverges.

5"+1(n + 1)!(2n)" 5nm 5
= — — <1,
(2n + 2)nt15mp! 2(n+ 1)» 2¢

So the ratio test shows that the series converges.
We'll estimate Y- ,(r? —1)/(n* — 1) = 3277, 1/(n? + 1). We can apply the
integral test to this to see that

> dx ) 1A 7 _ 1
Rng/n 1+x2:1§£noo{tan lx}n:§—tan 1n:tan15
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So we choose n with tan™!(1/n) < 0.0005. We know that tan™' # < z so it suffices
to choose n = 2,000. The required estimate is s2 gog = 0.576.

. For convergence, we require |sinz| < 1, which means x is not an odd multiple of
7. For the second series, we require |1 + x| < 1 which means z is in the interval
(—2,0). Finally, we require |1 — 2| > 1 for convergence. This means either + < 0
or x > 2.

. The corresponding absolute series is > | 1/n3/? which converges. So we have
absolute convergence.

This series diverges since its terms do not approach zero.

Note that nsin(1/n) — 1 and so this series diverges too.

This series does not converge absolutely, by comparison with > 7 1/y/n. On the
other hand, the alternating series test can be applied to show the series converges
conditionally.

. We use the ratio test in all three cases. For the first series, we have

2 (0 +1) _ Jeln? 4 1)
((+ DP TR (n+ 1P +1

When x = +1, the corresponding series of absolute values is Y~ 1/(n®+1) which
converges. So the interval of convergence is [—1,1].
For the second series,

2" 22" (2n +3)  2]z|(2n + 3)

— — 2|x|.
(20 + 5)27 12| o+ 5 2

When ¢ = 1/2, the series is =257 (—1)"/(2n 4 3) which converges (alternating
series test). When # = —1/2 the series is =23 _°"  1/(2n 4 3) which diverges. So
the interval of convergence is (—1/2,1/2].

For the third series

3n—|—1|x|3n+3(3n)! B 3|x|3

= — 0.
(3n+3)I137z[3»  (Bn+3)(3n+2)(3n+1)

So the series converges for all x.



