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Abstract. We explicitly determine the non-tempered local Arthur packets for GSp(4)

of Howe - Piatetski-Shapiro type, Saito-Kurokawa type and Soudry type. As a conse-

quence we show that Gritsenko lifts are the only paramodular forms that can occur in

global CAP representations of GSp(4,AQ).
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Introduction

Arthur [3] has classified the discrete automorphic spectrum of symplectic and split orthogonal
groups. For the group PGSp(4) ∼= SO(5), the discretely appearing automorphic representations
come in finite or infinite packets, of which there are six types. The “general” type (G) consists of
those representations that lift to cusp forms on GL(4). The Yoshida type (Y) can be character-
ized as representations whose L-functions are of the form L(s, π1)L(s, π2) with distinct cuspidal,
automorphic representations on GL(2). At least conjecturally (G) and (Y) consist of every-
where tempered representations. Then there are three non-tempered types (Q), (P) and (B),
associated with the three conjugacy classes of parabolic subgroups. These consist essentially
of CAP representations with respect to the Klingen parabolic Q, the Siegel parabolic P , and
the Borel subgroup B, respectively. Finally, there is the type (F) consisting of one-dimensional
representations. See [2], [23] for a more detailed description of the six types.

For a positive integer N , let K(N) be the paramodular group of level N . Holomorphic Siegel
modular forms of degree 2 with respect to K(N) are known as paramodular forms. These
are well behaved in many ways; for example, there is a theory of old- and newforms [17], and
cuspidal newforms admit a strong multiplicity one theorem [23]. Paramodular forms of weight
2 are also the ones appearing in the paramodular conjecture formulated in [4].

“Most” paramodular forms appear in packets of type (G). As observed in Lemma 2.5 of [23],
packets of type (Y) cannot contain any paramodular forms. It is known that Gritsenko or
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Saito-Kurokawa liftings appear in packets of type (P). In this note we will prove that packets
of type (P) do not contain any paramodular forms besides these liftings, and that packets of
type (Q) or (B) do not contain any paramodular forms at all. As an application we can slightly
strengthen the paramodular strong multiplicity one theorem of [23].

Our method is to calculate the local Arthur packets for types (Q), (P) and (B) explicitly.
Once this is done, one can use the local theory of [18] to look up which representations contain
paramodular vectors. It turns out that for types (Q) and (B), and working over the number
field Q, there always exists a non-archimedean place for which none of the elements in the packet
is paramodular.

Local Arthur packets for GSp(4) have one or two elements, the size being determined by
a centralizer group. Each local packet contains a “base point”, which is easy to determine by
general principles. The main difficulty is to determine the “non base point” in the cases where
the packet has two elements. For types (P) and (B), we do this in an indirect way, using the fact
from [15] (see also [5] and [20]) that the global representations in question can be constructed

as theta liftings from the metaplectic group S̃L(2). Hence the representations in a local packet
can be determined by calculating certain cases of the local theta correspondence. For type (Q),
it turns out that the 2-element packets coincide with those of type (B), so no additional work
is necessary. Tables 1, 2 and 3 summarize the local packets in the three cases.

Some of the results in this note are not new. For example, the local and global packets of
type (Q) have also been determined in [8]. Some explicit information for type (P) is already
contained in [20] and [5]. Still we found it useful to summarize the constructions in all cases
and present the local packets using standard notation for GSp(4). We also give information on
K-types in the real case, which is useful for applications to Siegel modular forms.

Acknowledgement. I would like to thank Brooks Roberts for many helpful discussions and
for helping to improve the exposition.

Notation. For most of this note we work with the group GSp(4) = {g ∈ GL(4) | tgJg =
µ(g)J} defined by the symplectic form

J =

[
1

1
−1

−1

]
,

except for Sect. 5, where we will switch to the “classical” symplectic form
[

0 12
−12 0

]
. The group

Sp(4) is the subgroup consisting of elements for which the scalar µ(g) is 1. If F is a local
field, then let LF be its Weil group if F is archimedean, and its Weil-Deligne group if F is
non-archimedean. If F is non-archimedean, we use the classification of irreducible, admissible
representations of GSp(4, F ) into types I, IIa, IIb, . . . , as explained in Sect. 2.2 of [18].

1 Global packets of type (B), (P) and (Q)

Let F be an algebraic number field, and A its ring of adeles. Global Arthur parameters are
formal objects of the form

∑
i µi � ν(ni), where µi is a self-dual, unitary, cuspidal automorphic

representation of GL(mi,A), and ν(n) is the irreducible representation of SL(2,C) of dimension
n. In the case of GSp(4), these parameters come in six different types. In this work we are
interested in the parameters which in [23] were called of type (B), (P) and (Q). Their description
is as follows.
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(B) ψ = (χ1�ν(2))� (χ2�ν(2)), where χ1, χ2 are distinct quadratic Hecke characters. These
are the parameters of Howe - Piatetski-Shapiro type.

(P) ψ = (µ � 1) � (σ � ν(2)), where µ is a unitary, cuspidal automorphic representation of
GL(2,A) with trivial central character, and σ is a quadratic Hecke character. These are
the parameters of Saito - Kurokawa type.

(Q) ψ = µ � ν(2), where µ is a self-dual, unitary, cuspidal automorphic representation of
GL(2,A) with non-trivial central character. These are the parameters of Soudry type.
The central character ξ of µ determines a quadratic extension E of F . There exists a
character θ of A×E such that µ = AIE/F (θ), i.e., µ is obtained from θ by automorphic
induction.

Given such a global parameter ψ and a place v of F , there is an associated local Arthur parameter
ψv. These are maps

ψv : LFv × SL(2,C) −→ Sp(4,C). (1)

By (1.4) - (1.7) of [23], their explicit form is as follows, where w ∈ LFv .

(B) We factor χi = ⊗χi,v and identify χi,v with a character of LFv . Then ψv is given by

(w, 1) 7−→

 χ1,v(w)
χ2,v(w)

χ2,v(w)
χ1,v(w)

 , (1,
[
a b
c d

]
) 7−→

[
a b
a b
c d

c d

]
. (2)

(P) We factor µ = ⊗µv and σ = ⊗σv. Let

φv : LF → SL(2,C), φ(w) =
[
φv,1(w) φv,2(w)
φv,3(w) φv,4(w)

]
, (3)

be the L-parameter of the irreducible, admissible representation µv of PGL(2, Fv). Then
ψv is given by

(w, 1) 7−→

 σv(w)
φv,1(w) φv,2(w)
φv,3(w) φv,4(w)

σv(w)

 , (1,
[
a b
c d

]
) 7−→

[
a b
1
1

c d

]
. (4)

(Q) We factor µ = ⊗µv. The L-parameter φv : LFv → GL(2,C) of µv can be arranged in such
a way that it takes values in the group

O(2,C) = {A ∈ GL(2,C) | tA[ 1
1 ]A = [ 1

1 ]}. (5)

Then ψv is given by

(w, 1) 7−→
[
φv(w)

φv(w)

]
, (1,

[
a b
c d

]
) 7−→

[
a b
a b

c d
c d

]
. (6)
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To ψv is attached a finite set Πψv of irreducible, admissible representations of PGSp(4, Fv)
according to Theorem 1.5.1 of [3]. Let Z be the center of Sp(4,C). The elements of the local
Arthur packet Πψv are fibered over the characters of the centralizer group

Sψv = Sψv/S
0
ψv
Z, (7)

where Sψv is the centralizer of the image of ψv, and S0
ψv

is its identity component. It is easy to
see that the groups Sψv are as follows.

(B) Sψv has two elements in all cases.

(P) Sψv is trivial if µv is a principal series representation, and otherwise has two elements.

(Q) We factor θ = ⊗θw. If v does not split in E, and w is the unique place of E lying above

v, then the L-parameter of µv equals ind
WFv
WEw

(θw). If v splits in E, and w1, w2 are the two

places of E lying above v, then θw := (θw1 , θw2) is a pair of characters of F×v , and µv is
the principal series representation θw1 × θw2 ; since the central character ξv is trivial, we
have in fact θw1θw2 = 1. In either case we write µv = AIEw/Fv

(θw). Then Sψv is trivial if
θw is not Galois-invariant (which in the split case means that θw1 6= θw2), and otherwise
has two elements.

Since Sψv has at most two elements, we may think of the fibration over the characters of Sψv as
a map ε : Πψv → {±1}. If Sψv is trivial, then ε is +1 for all representations in the local packet.
It will turn out later that the map ε is in fact injective. Since this is not true in general (see the
comments after Theorem 1.5.1 of [3]), we will however not use this fact.

Our goal is to determine the local packets Πψv explicitly. By Proposition 7.4.1 of [3], Πψv

contains the irreducible representations with L-parameter

φψv(w) = ψ(w,

[
|w|1/2v

|w|−1/2
v

]
), w ∈ LFv . (8)

In each case this turns out to be a single unitary representation, which can be viewed as a “base
point” π+v in the local packet. For non-archimedean v, using (2), (4) and (6), π+v can be read
off Table A.7 of [18].

(B) π+v is the Langlands quotient of the Borel induced representation

χ1,vχ2,v| · |v × χ1,vχ2,v o χ2,v| · |−1/2v . (9)

If χ1,v 6= χ2,v, it is the representation L(χ1,vχ2,v| · |v, χ1,vχ2,v o | · |−1/2v χ2,v) of type Vd,

and if χ1,v = χ2,v it is the representation L(| · |v, 1F×
v
o | · |−1/2v χ1,v) of type VId.

(P) π+v is the Langlands quotient of the Siegel induced representation

| · |1/2v σvµv o | · |−1/2v σv. (10)

There are four possibilities, depending on µv and σv:

• If µv is a principal series representation χv×χ−1v with a character χv of F×v , then π+v
is the representation χvσv1GL(2) o χ−1v of type IIb.
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• If µv = χvStGL(2), where χv is a quadratic character different from σv, then π+v is the

representation L(| · |1/2v χvσvStGL(2), | · |
−1/2
v σv) of type Vb.

• If µv = σvStGL(2), then π+v is the representation L(| · |1/2v StGL(2), | · |
−1/2
v σv) of type

VIc.

• If µv is supercuspidal, then π+v is the representation L(| · |1/2v σvµv, | · |−1/2v σv) of type
XIb.

(Q) π+v is the Langlands quotient of the Klingen induced representation

| · |vξv o | · |−1/2v µv. (11)

There are four possibilities, depending on whether ξv is trivial or not, and whether θw
(defined as above) is Galois-invariant or not:

• If ξv 6= 1 and θw is not Galois-invariant (i.e., µv is supercuspidal), then π+v is the

representation L(| · |vξv, | · |−1/2v µv) of type IXb.

• If ξv 6= 1 and θw = σv ◦ NEw/Fv
with a quadratic character σv of F×v (i.e., µv =

σv × (ξvσv)), then π+v is the representation L(| · |vξv, ξv o | · |−1/2v σv) of type Vd.

• If ξv = 1 and θw = (θw1 , θw2) with θw1 6= θw2 , then π+v is the representation θw1θ
−1
w2

o
θw21GSp(2) of type IIIb.

• If ξv = 1 and θw = (σv, σv) with a quadratic character σv of F×v (i.e., µv = σv × σv),
then π+v is the representation L(| · |v, 1F×

v
o | · |−1/2v σv) of type VId.

It follows from Tables A.1 and A.2 of [18] that π+v is unitary, non-tempered and non-generic in
all cases. To π+v is attached the sign ε(π+v ) = 1.

The global Arthur packet is defined as

Πψ :=
{
π = ⊗πv | πv ∈ Πψv , πv = π+v for almost all v

}
. (12)

The “global base point” in each packet is obtained by taking π+v at each place. Hence the global
base point is the isobaric constituent of the following globally induced representation:

(B) χ1χ2| · | × χ1χ2 o χ2| · |−1/2.

(P) | · |1/2σµo | · |−1/2σ.

(Q) | · |ξ o | · |−1/2µ.

Every element of Πψ is near equivalent to the global base point. Hence, cuspidal elements of Πψ

are CAP with respect to the Borel subgroup B, the Siegel parabolic P , or the Klingen parabolic
Q, respectively.

1.1 Lemma. Let ψ be any Arthur parameter for GSp(4). The discrete automorphic elements of
Πψ comprise a near-equivalence class of all representations in the discrete automorphic spectrum
of PGSp(4,A).
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Proof. It is clear from the definition (12) that the elements of Πψ are near-equivalent. Assume
that π occurs in the discrete, automorphic spectrum of GSp(4,A) and is near equivalent to
the elements in Πψ. We have to show that π ∈ Πψ. Assume first that ψ is of type (G).
Then ψ = µ� 1 with a self-dual, symplectic, unitary, cuspidal automorphic representation µ of
GL(4,A). By the definitions involved, the partial L-functions of the elements of Πψ are equal
to LS(s, µ), where S is a finite set of places. Hence LS(s, π) = LS(s, µ) for large enough S. By
considering the partial L-functions of the various types of Arthur packets, as in Table 1 of [23],
and keeping in mind the classification of automorphic representations of GL(n), as in Theorem
(4.4) of [10], we see that π must be of type (G). The strong multiplicity one theorem for GL(4)
then implies that π ∈ Πψ.

Similar arguments apply for ψ of one of the other types.

We return to ψ of type (B), (P) or (Q). If we twist all elements of a packet Πψ by a fixed
quadratic Hecke character χ, then we obtain another packet of the same type. More precisely,

χ⊗Πψ = Πχ⊗ψ, (13)

where

χ⊗ ψ =


(χχ1 � ν(2)) � (χχ2 � ν(2)),

(χµ� 1) � (χσ � ν(2)),

χµ� ν(2),

(14)

for

ψ =


(χ1 � ν(2)) � (χ2 � ν(2)) of type (B),

(µ� 1) � (σ � ν(2)) of type (P),

µ� ν(2) of type (Q).

(15)

Let π = ⊗πv be an element of Πψ. The multiplicity m(π) with which π appears in the discrete
automorphic spectrum is either 0 or 1. Arthur’s multiplicity formula characterizes those π’s
with m(π) = 1, as follows. Let ε(π) =

∏
v ε(πv).

(B) m(π) = 1 if and only if ε(π) = 1.

(P) m(π) = 1 if and only if ε(π) = ε(1/2, σ ⊗ µ).

(Q) m(π) = 1 for all π ∈ Πψ. Since there is no sign condition, we say that these packets are
stable.

Hence, for types (B) and (Q), the global base point appears in the discrete automorphic spec-
trum, and for type (P) it does so if and only if ε(1/2, σ ⊗ µ) = 1.

1.2 Lemma. Let ψ be an Arthur parameter of type (B), (P) or (Q). Let π be an element of
Πψ that appears in the discrete automorphic spectrum. Then π is cuspidal if and only if one of
the following conditions is satisfied:

i) π is not the global base point.

ii) ψ = (µ � 1) � (σ � ν(2)) is of type (P), π is the global base point (hence assuming
ε(1/2, σ ⊗ µ) = 1), and L(1/2, σ ⊗ µ) = 0.
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Proof. The residual spectrum of GSp(4,A) is explicitly described in Sect. 7 of [11]. From this
description it is easy to see that if π ∈ Πψ is in the residual spectrum, then π must be the global
base point, and if ψ is of type (P), then in addition L(1/2, σ ⊗ µ) must be non-zero.

2 Local packets for type (B)

To determine the local packets for Arthur parameters of Howe - Piatetski-Shapiro type, we first
recall some facts about the theta correspondence between the metaplectic group S̃L(2,A) and
the group SO(5,A) ∼= PGSp(4,A); see [15], [26], [5]. The structure of the Weil representations

of S̃L(2,A) is well known. Locally, they are parametrized by quadratic characters χv of F×v .
Given such a χv, the local Weil representation π̃χv splits into two irreducible parts, the even Weil
representation π+χv

and the supercuspidal odd Weil representation π−χv
. Globally, let χ = ⊗χv

be a non-trivial quadratic Hecke character, and let S be a finite set of places of even cardinality.
Then

π̃Sχ :=
(⊗
v∈S

π̃−χv

)
⊗
(⊗
v/∈S

′ π̃+χv

)
(16)

defines a representation of S̃L(2,A). These are the irreducible, automorphic constituents of the
global Weil representation. Evidently, their near-equivalence classes are obtained by fixing χ
and varying S. We note that, in order for a collection of local metaplectic representations to
define a representation of the global S̃L(2,A), the parity condition (1) on page 280 of [26] has
to be satisfied. For the Weil representations on the right side of (16) this parity condition is
equivalent to the cardinality of S being even.

We consider the non-archimedean local theta liftings, temporarily omitting the subindex v.
Thus let F be a non-archimedean local field of characteristic zero, and let χ by a quadratic
character of F×. The theta liftings of the even and odd Weil representations are as follows.

S̃L(2, F ) GSp(4, F ) type L-parameter

π̃+χ L(νχ, χo ν−1/2) Vd χϕ1 ⊕ ϕ1

π̃−χ δ∗([χ, νχ], ν−1/2) Va∗ χϕSt ⊕ ϕSt

π̃+1 L(ν, 1F× o ν−1/2) VId ϕ1 ⊕ ϕ1

π̃−1 L(ν1/2 StGL(2) o ν−1/2) VIc ϕ1 ⊕ ϕSt

(17)

In this table, ϕ1 denotes the L-parameter of the trivial representation of GL(2, F ), given in
(ρ,N) form by

ϕ1 : w 7−→
[
|w|1/2

|w|−1/2

]
, N = [ 0 0

0 0 ], (18)

and ϕSt denotes the L-parameter of the Steinberg representation of GL(2, F ), given in (ρ,N)
form by

ϕSt : w 7−→
[
|w|1/2

|w|−1/2

]
, N = [ 0 1

0 0 ]. (19)
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The last column in (17) lists the L-parameter of the GSp(4, F ) representation as a 4-dimensional
representation of LF ; see Table A.7 of [18].

We indicate how to find the liftings in (17). Since PGSp(4, F ) ∼= SO(5, F ), the non-
supercuspidal cases Vd, VId and VIc follow from the well known theta correspondence between
S̃L(2, F ) and SO(3, F ) ∼= PGL(2, F ), together with a tower argument. For Va∗, one can use
Proposition 5.8 of [20] (with τ = χ1D×), which implies that the theta lifting of π̃−χ coincides
with the theta lifting of a one-dimensional representation of a certain group GO(4). The latter
lifting has been calculated in Theorem 4.6.3 of [19].

We note that the definition of the representations π̃±χ depends on the choice of an additive
character of F . The definition of the theta correspondence also depends on such a choice. We
choose these two characters to be the same, in which case the GSp(4, F ) representations in (17)
are independent of which character is chosen.

We return to F being global.

2.1 Lemma. Let χ be a nontrivial quadratic character of F×\A×. Consider the Arthur pa-
rameter ψ = (χ � ν(2)) � (1 � ν(2)) of Howe - Piatetski-Shapiro type. As S runs through the
finite sets of places of F with even cardinality, the theta liftings of the Weil representations π̃Sχ
to SO(5,A) ∼= PGSp(4,A) run through the discrete automorphic elements of the global packet
Πψ.

Proof. Consider first π̃Sχ for non-empty S. It is a cuspidal representation of S̃L(2,A), because
π̃−χv

is supercuspidal. Its first occurrence in the tower SO(2n + 1,A) must be cuspidal. This
first occurrence cannot happen with SO(3,A) ∼= PGL(2,A), since the local lifting of π̃+χv

is one-

dimensional. Hence, by stable range, π̃Sχ lifts to a cusp form on SO(5,A) ∼= PGSp(4,A). By

(17), this cusp form is CAP to the globally induced χ| · | ×χo | · |−1/2, and therefore an element
of the packet Πψ. For empty S, the lift of π̃Sχ is the isobaric constituent of χ| · | × χo | · |−1/2,
hence the base point in Πψ.

Conversely, let π be an element of Πψ which is not the base point. Then π is cuspidal by
Lemma 1.2. As we saw in the previous section, π is CAP to χ| · | × χo | · |−1/2. By Theorems

2.2 and 2.4 of [15], π is a theta lifting of a Weil representation of S̃L(2,A). More precisely, by
comparing local components almost everywhere, we see that π must be a lifting of π̃Sχ for some
S.

It follows from Lemma 2.1 that the local Arthur packets Πψv for ψ = (χ� ν(2))� (1� ν(2))
contain two elements, namely the theta liftings of π̃±χv

. For arbitrary ψ of type (B), the local
packets are then obtained by twisting; see (13), (14), (15). We thus obtain from (17) the non-
archimedean local packets summarized in Table 1. To determine the local signs given in the last
column of Table 1, we can argue as follows. Since there is a parity condition on S in Lemma
2.1, the global packet Πψ is unstable, meaning a discrete automorphic element π = ⊗πv of Πψ

will no longer be automorphic if πv is replaced by its partner in the local packet for a single
place v. The condition ε(π) = 1 in Arthur’s multiplicity formula hence implies that the two
representations in a local packet must be assigned different signs. Since the base point in each
local packet always has the sign +1, the non-base point must have sign −1.
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Table 1: Local Arthur packets Πψ of Howe - Piatetski-Shapiro type (Borel packets, type (B)).
The local Arthur parameter ψ is determined by a pair (χ1, χ2) of quadratic characters of F×;
see (2). For the archimedean K-type H, see (20); for A, C and D, see (21).

(χ1, χ2) GSp(4, F ) type L-parameter ε

non-archimedean case

χ1 6= χ2 L(χ1χ2ν, χ1χ2 o ν−1/2χ2) Vd χ1ϕ1 ⊕ χ2ϕ1 +1

δ∗([χ1χ2, νχ1χ2], ν
−1/2χ2) Va∗ χ1ϕSt ⊕ χ2ϕSt −1

χ1 = χ2 L(ν, 1F× o ν−1/2χ1) VId χ1ϕ1 ⊕ χ1ϕ1 +1

L(ν1/2 StGL(2) o ν−1/2χ1) VIc χ1ϕ1 ⊕ χ1ϕSt −1

real case

χ1 6= χ2 L(ν sgn, sgn o ν−1/2) (1, 1), H ϕ1 ⊕ sgnϕ1 +1

Dhol(1, 0) (2, 2), A ϕD(1) ⊕ ϕD(1) −1

χ1 = χ2 L(ν, 1R× o ν−1/2χ1) (0, 0), D χ1ϕ1 ⊕ χ1ϕ1 +1

L(ν1/2D(1) o ν−1/2χ1) (1,−1), C χ1ϕ1 ⊕ ϕD(1) −1
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The real case

The calculation of the local packets for Fv = R is analogous to the non-archimedean case. The
Weil representations π̃+χv

have a vector of lowest (or highest) weight 1/2 (or −1/2), and the
π̃−χv

have a vector of lowest (or highest) weight 3/2 (or −3/2). Their theta liftings to the odd
orthogonal tower can be determined using [26] and [12]. This leads to the packets summarized
in Table 1. Alternatively, one can use Examples 1.4.2 and 1.4.3 of [1], in which the packets
{H,A} and {D,C} have been determined.

In the rest of this section we will explain the meaning of the “type” column in the archimedean
case. We will use the conventions of [14] and [22] for K-types of representations of GSp(4,R).
The symbol D(1) denotes the “lowest” discrete representation of GL(2,R), with minimal K-type
2 and trivial central character. Let σ be a quadratic character of R×, which can only be the
trivial character or the sign character sgn.

We will discuss two Borel induced representations of PGSp(4,R). By Theorem 11.2 of [14],
the representation ν sgn× sgno ν−1/2σ has length 4. More precisely, its irreducible constituents
are as follows:

i) Dgen(1, 0), the “large” (generic) limit of discrete series representation with minimal K-type
(2, 0). Its K-types lie in the regions marked B in picture (20) below.

ii) L(ν1/2D(1) o ν−1/2σ), a non-tempered representation with minimal K-type (1,−1). Its
K-types can be determined from Lemma 6.1 and equation (10.25) of [14]; they lie in the
“square” region C in picture (20). This representation appears with multiplicity 2 in
ν sgn× sgn o ν−1/2σ.

iii) The Langlands quotient L(ν sgn × sgn o ν−1/2σ), which has a minimal K-type at (1, 1).
Its K-types can be determined from Lemma 6.1 of [14], subtracting the K-types of the
other constituents from the K-types of the full induced representation; they lie in the
disconnected “wedge” region H in picture (20). (This is the representation underlying
holomorphic Siegel modular forms of weight 1. It is invariant under twisting by quadratic
characters, so we may omit the σ.)

H

H

B

B

C

The representation ν sgn×sgnoν−1/2σ
has four constituents:

• Dgen(1, 0) = B.

• L(ν1/2D(1) o ν−1/2σ) = C
(appears with multiplicity 2).

• L(ν sgn× sgn o ν−1/2) = H.

(20)
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Next consider the representation ν × 1R× o ν−1/2σ of PGSp(4,R). By Theorem 10.7 of [14],
it has length 4. Its irreducible constituents are as follows:

i) Dhol(1, 0), the holomorphic limit of discrete series representation with minimal K-type
(2, 2). (This is the representation underlying holomorphic Siegel modular forms of weight
2.) Its K-types lie in the disconnected “wedge” region A in picture (21) below.

ii) Dgen(1, 0), the same “large” limit of discrete series representation as above. Its K-types
are contained in region B in picture (21).

iii) L(ν1/2D(1)oν−1/2σ), the same non-tempered representation with minimal K-type (1,−1)
as above. Its K-types lie in the “square” region C in (21).

iv) The Langlands quotient L(ν × 1R× o ν−1/2σ), which has a minimal K-type at (0, 0). Its
K-types can be determined from Lemma 6.1 of [14], substracting the K-types of the other
constituents from the K-types of the full induced representation; they lie in the fourth
quadrant, indicated as region D in the picture below. More precisely, the multiplicity of
the K-type (k1, k2) is 1 if k1, k2 are integers of the same parity with k1 ≥ 0 ≥ k2, and 0
otherwise.

A

A

B

B

C

D

The representation ν× 1R× o ν−1/2σ
has four constituents:

• Dhol(1, 0) = A.

• Dgen(1, 0) = B.

• L(ν1/2D(1) o ν−1/2σ) = C.

• L(ν, 1R× o ν−1/2σ) = D.

(21)

The type entry in Table 1 shows the minimal K-type of a representation and the region that
contains all the K-types.

3 Local packets for type (P)

In this section we determine the local packets for Arthur parameters of Saito - Kurokawa type.
As explained in [5] and [6], up to quadratic twists such Arthur packets are obtained as theta

liftings of cusp forms on the metaplectic group S̃L(2,A) that are orthogonal to all global Weil

representations π̃Sχ . By [26], such cusp forms on S̃L(2,A) are grouped into finite Waldspurger

packets Π̃µ, which are their near-equivalence classes. They are parametrized by the unitary,
cuspidal, automorphic representations µ ∼= ⊗µv of GL(2,A) with trivial central character. The
elements of Π̃µ are tensor products π̃ ∼= ⊗π̃v, where π̃v is taken from a local packet Π̃µv . The
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local packet has one element if µv is a principal series representation, and two elements if µv is
square-integrable. Moreover, each local packet contains a base point assigned the sign +1, and
the second representation in case of a two-element packet is assigned the sign −1. In order for
⊗π̃v to be an element of the global packet Π̃µ, the product of all local signs must equal ε(1/2, µ).

In fact, if this condition is not satisfied, then ⊗π̃v does not define a representation of S̃L(2,A);
see (1) on page 280 of [26].

3.1 Lemma. Let µ = ⊗µv be a unitary, cuspidal, automorphic representation of GL(2,A)
with trivial central character. Consider the Arthur parameter ψ = (µ � ν(1)) � (1 � ν(2)) of
Saito - Kurokawa type. As π̃ runs through the Waldspurger packet Π̃µ, their theta liftings to
SO(5,A) ∼= PGSp(4,A) run through the discrete automorphic elements of the Arthur packet
Πψ.

Proof. The proof is analogous to that of Lemma 2.1. By Lemme 49 of [26] or Lemma 7.2 of
[15], the theta lifting of π̃ ∈ Π̃µ to PGSp(4,A) is near equivalent to any irreducible constituent of
|·|1/2µo|·|−1/2. If π̃ is the global base point in the Waldspurger packet (assuming ε(1/2, µ) = 1),
then the lifting is isomorphic to the isobaric constituent of | · |1/2µ o | · |−1/2. In this case, if
L(1/2, µ) = 0, the lifting is cuspidal by Proposition 24 of [26], and if L(1/2, µ) 6= 0, it appears in
the residual spectrum by Theorem 7.1 of [11]. If π̃ is not the base point, then it does not lift to
SO(3,A) ∼= PGL(2,A), and hence its lifting to SO(5,A) ∼= PGSp(4,A) is cuspidal. We see that
in all cases the lifting of π̃ to PGSp(4,A) is in the discrete spectrum. Hence the lifting must be
contained in a packet Πψ. Looking at almost every place, we must have ψ = (µ�ν(1))�(1�ν(2))
of type (P).

Conversely, let π be a cuspidal element of Πψ. As we saw in Sect. 1, π is CAP to | · |1/2µo
| · |−1/2. By Theorems 2.2 and 2.4 of [15], π is a theta lifting of a cusp form on S̃L(2,A) which is
not a Weil representation. More precisely, by comparing local components almost everywhere,
we see that π must be a lifting of an element of Π̃µ.

It follows from Lemma 3.1 that the local Arthur packets Πψv for ψ = (χ� ν(2))� (1� ν(2))
are the theta liftings of the local Waldspurger packets Π̃µv . These liftings have been calculated;
see Table 2 of [20]. For arbitrary ψ of type (P), the local packets are then obtained by twisting;
see (13), (14), (15). We thus obtain the local packets summarized in Table 2. To determine the
signs given in the last column of Table 2, we can argue as in the Borel case. Lemma 3.1, together
with the structure of the Waldspurger packets on S̃L(2,A), imply that the global Arthur packet
Πψ is unstable. Hence, if a local packet has two elements, these two representations must be
assigned different signs.

The real case

For an integer ` ≥ 1, let D(`) be the discrete series representation of GL(2,R) with a lowest
weight vector of weight ` + 1 and central character sgn`+1. Let σ be a quadratic character of
R×. To determine the K-types of the representation L(ν1/2D(`), ν−1/2σ) appearing in Table 2,
we consider ν1/2D(`)o ν−1/2σ. We are only interested in odd `, since only then does D(`) have
trivial central character. We already determined the K-types of L(ν1/2D(1)o ν−1/2σ); see (20)
and (21). Assuming k ≥ 3 and setting (p, t) = (k− 1, k− 2) in Theorem 10.1 of [14], we see that
ν1/2D(2k − 3) o ν−1/2σ has two irreducible constituents:
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Table 2: Local Arthur packets Πψ of Saito - Kurokawa type (Siegel packets, type (P)). The
local Arthur parameter ψ is determined by an irreducible, admissible, unitary representation
µ of PGL(2, F ), and a quadratic character σ of F×; see (3). The symbol φ stands for the L-
parameter of µ. The parameters ϕ1 and ϕSt are defined in (18) and (19). For the K-types A
and C, see (22).

µ GSp(4, F ) type L-parameter ε

non-archimedean case

χ× χ−1 χσ1GL(2) o χ−1 IIb χ⊕ χ−1 ⊕ σϕ1 +1

χStGL(2), χ 6= σ L(ν1/2χσStGL(2), ν
−1/2σ) Vb χϕSt ⊕ σϕ1 +1

δ∗([χσ, νχσ], ν−1/2σ) Va∗ χϕSt ⊕ σϕSt −1

σStGL(2) L(ν1/2StGL(2), ν
−1/2σ) VIc σϕSt ⊕ σϕ1 +1

τ(T, ν−1/2σ) VIb σϕSt ⊕ σϕSt −1

supercuspidal L(ν1/2σµ, ν−1/2σ) XIb φ⊕ σϕ1 +1

δ∗(ν1/2σµ, ν−1/2σ) XIa∗ φ⊕ σϕSt −1

real case

χ× χ−1 χσ1GL(2) o χ−1 IIb χ⊕ χ−1 ⊕ σϕ1 +1

D(2k − 3), k ≥ 2 L(ν1/2D(2k − 3), ν−1/2σ) (k − 1, 1− k), C ϕD(2k−3) ⊕ σϕ1 +1

Dhol(k − 1, k − 2) (k, k), A ϕD(2k−3) ⊕ σϕD(1) −1
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i) Dgen(k−1, 2−k), the “large” (generic) discrete series representation with minimal K-type
(k, 2− k). Its K-types lie in region B in picture (22) below.

ii) The Langlands quotient L(ν1/2D(2k − 3) o ν−1/2σ), which has a minimal K-type at
(k − 1, 1 − k). Its K-types can be determined from Lemma 6.1 of [14], substracting the
K-types of the other constituent from the K-types of the full induced representation; they
are contained in region C in (22). This is the non-tempered cohomological representation
mentioned in Proposition 7.7 of [13].

A

A

B

B

C

The representation ν1/2D(2k − 3) o
ν−1/2σ has two constituents:

• Dgen(k − 1,−k + 2) = B.

• L(ν1/2D(2k− 3), ν−1/2σ) = C.

The diagram shows the case k = 3.
Shown is also the representation

• Dhol(k − 1, k − 2) = A.

with minimal K-type at (k, k).

(22)

The representation Dhol(k− 1, k− 2) appearing in Table 2 is the holomorphic discrete series
representation of PGSp(4,R) with scalar minimal K-type (k, k). It is the representation under-
lying Siegel modular forms of weight k. Its K-types are well known; see Sect. 2.2 of [22]. In
(22), they lie in the disconnected “wedge” region A.

4 Local packets for type (Q)

Let ψ = µ � ν(2) be an Arthur parameter of Soudry type. Recall that µ = ⊗µv is a self-
dual, unitary, cuspidal automorphic representation of GL(2,A) with non-trivial central character
ξ = ⊗ξv. The central character determines a quadratic extension E of F . The representation µ
is obtained by automorphic induction from a non-Galois-invariant character θ = ⊗θw of A×E .

By [25], [8] or [16], the elements of the packet Πψ can also be obtained as theta liftings.
Since we will not need the details of this construction, we only explain it briefly. The theta
correspondence is one with similitudes, between GSp(4,A) and GO(2,AE). Here, E is viewed as
a 2-dimensional quadratic space over F , endowed with the norm form. Locally, GSO(2, Ew) =
E×w , and GO(2, Ew) = 〈τw〉 n E×w , where τw is the non-trivial Galois element of Ew/Fv. If

the character θw is not Galois-invariant, θ+w := ind
GO(2,Ew)
GSO(2,Ew)(θw) is an irreducible 2-dimensional

representation of GO(2, Ew). Otherwise, θw admits two extensions θ±w to GO(2, Ew). In the
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non-Galois-invariant case, the local packet Πψv has one element, namely the theta lift of θ+w ,
and in the Galois-invariant case, Πψv has two elements, namely the lifts of θ±w .

Instead of calculating these theta lifts, which is the approach taken in [8], we observe the
following. If the packet has only one element, it must be the base point already determined in
Sect. 1; see (11). Otherwise, i.e. in the Galois-invariant cases, the parameters (6) are actually
of Howe - Piatetski-Shapiro type. More precisely, for ξv 6= 1 (i.e., Ew is a field) and θw =
σv ◦NEw/Fv

, conjugation by the matrix

A =
1√
2

[
1 1
−i i

−i i
1 1

]
∈ Sp(4,C) (23)

transforms the parameter (6) into the parameter (2) with χ1,v = σv and χ2,v = σvξv. Similarly,
for ξv = 1 (i.e., Ew = Fv × Fv) and θw = (σv, σv), conjugation by A transforms the parameter
(6) into the parameter (2) with χ1,v = χ2,v = σv. Hence the Klingen packets in these cases are
the same as Borel packets, which we already determined in Table 1. More precisely, for ξv 6= 1
and θw = σv ◦ NEw/Fv

, the packet is of type {Vd,Va∗}, and for ξv = 1 and θw = (σv, σv), the
packet is of type {VId,VIc}.

Table 3 summarizes the local Klingen packets.

Local archimedean packets

The determination of the local Arthur packets for F = R is analogous to the non-archimedean
case. The base points have L-parameter (6), and the two-element packets coincide with the
archimedean Borel packets in Table 1. Our only goal in this subsection is to understand the
K-types of the representation L(ν sgn, ν−1/2D(`)), which is the single element in the Klingen
packet for ξ 6= 1 and θ not Galois-invariant. Here, for an integer ` ≥ 1, the symbol D(`) denotes
the discrete series representation of GL(2,R) with a lowest weight vector of weight ` + 1 and
central character sgn`+1.

Assume that ` ≥ 2. By Theorem 10.1 of [14], the representation ν sgno ν−1/2D(`) has three
irreducible subquotients:

i) Dhol(`, 1), the holomorphic discrete series representation with minimal K-type (` + 1, 3).
(This is the representation underlying vector-valued holomorphic Siegel modular forms of
weight det3 sym`−2.) Its K-types lie in region A in the picture (24).

ii) Dgen(`,−1), the “large” (generic) discrete series representation with minimal K-type (`+
1,−1). Its K-types lie in region B in the picture (24).

iii) The Langlands quotient L(ν sgn, ν−1/2D(`)), which has a minimal K-type at (` + 1, 1).
(This is the representation underlying vector-valued holomorphic Siegel modular forms of
weight det1 sym`.) Its K-types can be determined from Lemma 6.1 of [14], substracting
the K-types of the other constituents from the K-types of the full induced representation;
they lie in region J in the picture (24).

Note that ν sgnoν−1/2D(`) has central character sgn`, so only the case of even ` will be relevant
for us.
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A

A

J

J

B

B

The representation ν sgn o ν−1/2D(`)
has three constituents:

• Dhol(`, 1) = A.

• Dgen(`,−1) = B.

• L(ν sgn, ν−1/2D(`)) = J.

The diagram shows the case ` = 4.

(24)

The limit case ` = 1 is handled by Theorem 10.4 ii) of [14]. In this case ν sgn o ν−1/2D(1)
has only two irreducible constituents. This representation is not actually relevant for us since it
does not have trivial central character.

5 Paramodular forms

In this section we assume that the ground field is Q. We switch to the “classical” version of
GSp(4), defined with the symplectic form

[
12

−12
]
. For a congruence subgroup Γ of Sp(4,Q)

and non-negative integers k and j, let Sk,j(Γ) be the space of Siegel modular cusp forms of
weight detk symj with respect to Γ; see Sect. 2.1 of [23] for the precise definition. For j = 0 we
write Sk(Γ); this is the usual space of scalar-valued cusp forms of weight k.

For a positive integer N , the paramodular group of level N is defined as

K(N) = Sp(4,Z) ∩
[ Z NZ Z Z

Z Z Z N−1Z
Z NZ Z Z
NZ NZ NZ Z

]
. (25)

We are primarily interested in the spaces Sk,j(K(N)). As explained in [17], these spaces admit
a theory of new- and oldforms.

We see from the archimedean part of Table 1 that it is possible to construct holomorphic
Siegel modular forms of weight 1 and 2 from Borel CAP representations. Similarly, it follows
from the archimedean part of Table 3 that it is possible to construct holomorphic Siegel modular
forms of weight 1 and 2, and also certain vector-valued holomorphic Siegel modular forms of
weight det1 sym`, from Klingen CAP representations. However, as the following argument shows,
none of these can be paramodular.

5.1 Proposition. No representation in an Arthur packet of type (B) (Howe - Piatetski-Shapiro
type) or (Q) (Soudry type) is paramodular at every finite place.
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Table 3: Local Arthur packets Πψ of Soudry type (Klingen packets, type (Q)). The local Arthur
parameter ψ is determined by a quadratic character ξ of F× and a character θ of E×, where E
is the quadratic extension determined by ξ; see (6). In the row for IXb, φ is the L-parameter of
µ = AIE,θ, a supercuspidal representation of GL(2, F ). In the row for J, φ is the L-parameter
of D(`), a discrete series representation of GL(2,R). The positive integer ` needs to be even in
order for the GSp(4,R) representation to have trivial central character. For the K-type H, see
(20); for A, C and D, see (21).

E ↔ ξ θ GSp(4, F ) type L-parameter

non-archimedean case

ξ 6= 1 not Galois-invariant L(νξ, ν−1/2µ) IXb φ⊗ ϕ1

σ ◦NE/F L(νξ, ξ o ν−1/2σ) Vd (σ ⊕ σξ)⊗ ϕ1

δ∗([ξ, νξ], ν−1/2σ) Va∗ (σ ⊕ σξ)⊗ ϕSt

ξ = 1 (θ1, θ2), θ1 6= θ2 θ1θ
−1
2 o θ21GSp(2) IIIb (θ1 ⊕ θ2)⊗ ϕ1

(σ, σ) L(ν, 1F× o ν−1/2σ) VId (σ ⊕ σ)⊗ ϕ1

L(ν1/2 StGL(2) o ν−1/2σ) VIc σϕ1 ⊕ σϕSt

real case

ξ 6= 1 not Galois-invariant L(νξ, ν−1/2D(`)) (`+ 1, 1), J φ⊗ ϕ1

σ ◦NE/F L(νξ, ξ o ν−1/2σ) (1, 1), H (σ ⊕ σξ)⊗ ϕ1

Dhol(1, 0) (2, 2), A (σ ⊕ σξ)⊗ ϕD(1)

ξ = 1 (θ1, θ2), θ1 6= θ2 θ1θ
−1
2 o θ21GSp(2) IIIb (θ1 ⊕ θ2)⊗ ϕ1

(σ, σ) L(ν, 1R× o ν−1/2σ) (0, 0), D (σ ⊕ σ)⊗ ϕ1

L(ν1/2D(1) o ν−1/2σ) (1,−1), C σϕ1 ⊕ σϕD(1)
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Proof. Let χ1, χ2 be distinct quadratic Hecke characters, and consider the corresponding Arthur
packet of Howe - Piatetski-Shapiro type. We factor χi = ⊗χi,v. Since χ1χ2 is a non-trivial
character, there exists a finite place v such that χ1,vχ2,v is ramified. By Table 1, the local
Arthur packet at v is of type {Vd,Va∗}. Neither of the two representations is paramodular: Vd
is not, because χ1χ2 is ramified, and Va∗ is not because it is a non-generic supercuspidal; see
Theorem 3.4.3 of [18].

Let µ be a self-dual, unitary, cuspidal automorphic representations of GL(2,A) with non-
trivial central character, determining an Arthur packet of Soudry type. Let E/Q be the quadratic
extension corresponding to the central character ξ of µ, and let θ be a character of A×E such
that µ = AIE/Q(θ). We factor ξ = ⊗ξv. Since ξ is non-trivial, there exists a finite place v of E
for which ξv is ramified. By Table 3, the local Arthur packet is either of type IXb, or of type
{Vd,Va∗}. Again by Theorem 3.4.3 of [18], none of these representations contains paramodular
vectors.

Note that the non-existence for type (B) in this proposition is not based on the instability
of the global Arthur packets.

Now consider a global Arthur parameter ψ of Saito - Kurokawa type, given by a pair (µ, σ),
where µ is a unitary, cuspidal automorphic representation of GL(2,A) with trivial central char-
acter, and σ is a quadratic Hecke character. The representations π = ⊗πv in the global packet
Πψ are obtained by choosing one element πv from each local packet Πψv , with πv being the
base point almost everywhere. By Arthur’s multiplicity formula, π will appear in the discrete
automorphic spectrum if and only if

ε(π) :=
∏
v

ε(πv) = ε(1/2, σ ⊗ µ). (26)

If π appears, then it does so with multiplicity one.

5.2 Proposition. Consider a global Arthur packet Πψ of Saito - Kurokawa type, parametrized
by a pair (µ, σ), where µ = ⊗µv is a unitary, cuspidal automorphic representation of GL(2,A)
with trivial central character, and σ is a quadratic Hecke character.

i) If σ is non-trivial, then no representation in the packet Πψ is paramodular at every finite
place.

ii) If σ is trivial and µ∞ is a discrete series representation, then there exists a unique repre-
sentation π = ⊗πv in the packet Πψ that is paramodular at every finite place and appears
in the discrete automorphic spectrum. For each finite place, πv is the base point in the
packet Πψv .

Proof. Assume that σ = ⊗σv is non-trivial. Then there exists a finite place v for which σv
is ramified. A look at Table A.12 of [18] shows that none of the non-archimedean representa-
tions listed in Table 2 is paramodular (for ramified quadratic character). Hence none of the
representations in the global Arthur packet is paramodular everywhere.

Assume that σ is trivial. Then Table A.12 of [18] shows that precisely the base point in each
local packet is paramodular. Let πv be this base point, for each finite v. Assume in addition that
µ∞ is a discrete series representation, so that the archimedean local packet has two elements.
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Choose π∞ from this packet in such a way that (26) is satisfied. Then π = ⊗πv is the unique
element in the global Arthur packet which appears in the discrete spectrum and is paramodular
at every finite place.

We can now deduce the following result on paramodular Saito-Kurokawa liftings. A version
for square-free levels was proven in [21]. The existence of the lifting can also be proven by
combining the isomorphism from [24] with the Gritsenko lifting from [7]. We mention that in
[9], starting from Jacobi forms, Saito-Kurokawa liftings for arbitrary levels are constructed, not
with respect to the paramodular group, but with respect to the Siegel congruence subgroup

Γ
(2)
0 (N).

5.3 Theorem. Let N ≥ 1 and k ≥ 2 be integers. Let f ∈ S2k−2(Γ0(N)) be an eigenform and
a newform. Assume that the sign in the functional equation of L(s, f) is −1. Then there exists
a paramodular form F ∈ Sk(K(N)), unique up to multiples, with the following properties.

i) F is an eigenform for all good Hecke operators. The complete spin L-function of F is given
by

L(s, F ) =
1

4π
(s− 1/2)L(s, f)Z(s− 1/2)Z(s+ 1/2). (27)

Here, Z(s) is the completed Riemann zeta function.

ii) F is a newform in the sense of [17].

iii) For each prime p, the Atkin-Lehner eigenvalue of F at p coincides with the Atkin-Lehner
eigenvalue of f at p.

iv) Suppose that G ∈ S`(K(M)) is an eigenform and newform which has the same Hecke
eigenvalues as F almost everywhere. Then ` = k and M = N , and G is a multiple of F .

v) The adelization of F generates an irreducible, cuspidal, automorphic representation π ∼=
⊗πv of GSp(4,A). If µ is the cuspidal, automorphic representation of GL(2,A) generated
by f , then π lies in the Arthur packet Πψ, where ψ = (µ � 1) � (1 � ν(2)) is of Saito-
Kurokawa type.

Proof. Let µ be the cuspidal, automorphic representation of GL(2,A) generated by f . Then
ψ = (µ � 1) � (1 � ν(2)) is an Arthur parameter of Saito-Kurokawa type. By Proposition 5.2,
there exists a unique representation π = ⊗πv in Πψ which appears in the discrete spectrum
and is paramodular at every finite place. Our hypothesis on the sign in the functional equation
means that ε(1/2, µ) = −1. For each finite place, πv is the base point in the packet Πψv ,
which has the sign ε(πv) = 1 attached to it. By (26), we must have ε(π∞) = −1. Hence
π∞ = Dhol(k − 1, k − 2) by Table 2. Lemma 1.2 implies that π is cuspidal. It follows that we
can extract from π a holomorphic cuspidal paramodular newform F of weight k, as explained
(in greater generality) in Sect. 4.2 of [22]. Since F originates from the irreducible automorphic
representation π, its adelization (as defined in (4) of [17]) generates π, proving the first statement
of v).

By properties of the local paramodular theory, the level of F will be
∏
pa(πp), where a(πp)

is the conductor of the L-parameter of πp; see Theorem 7.5.9 of [18]. A look at the L-parameter
column of Table 2 shows that a(πp) = a(µp). It follows that F ∈ Sk(K(N)).
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By Theorem 7.5.9 of [18], the Atkin-Lehner eigenvalue of F at p coincides with ε(1/2, πp).
A look at the L-parameter column of Table 2 shows that ε(1/2, πp) = ε(1/2, µp). This proves
iii), since ε(1/2, µp) coincides with the Atkin-Lehner eigenvalue of f at p.

Since L(s, ϕ1) = ((1 − p−s−1/2)(1 − p−s+1/2))−1, the L-parameter column of Table 2 shows
that L(s, F ) = L(s, f)Z(s−1/2)Z(s+1/2) for the incomplete L-function that incorporates only
the finite places. At the archimedean place, the L-factor of Dhol(k − 1, k − 2) is

ΓC(s+ k − 3/2)ΓC(s+ 1/2),

where ΓC(s) = 2(2π)−sΓ(s); see Table 5 of [22]. The L-factor of D(2k − 3) is ΓC(s + k − 3/2).
The archimedean Euler factor for Z(s) is π−s/2Γ(s/2). Elementary properties of the Γ-function
then explain the factor 1

4π (s− 1/2) in (27).
We now proved i), ii), iii) and v). Let G be as in iv). Let π′ be the cuspidal representa-

tion generated by the adelization of G. It decomposes as a finite direct sum π1 ⊕ . . . ⊕ πn of
irreducible, cuspidal, automorphic representations of GSp(4,A) with trivial central character.
By our hypothesis on the Hecke eigenvalues, each πi is near equivalent to the representation π
generated by F , and hence lies in the packet Πψ. Moreover, since G is a paramodular form, each
πi is paramodular at every finite place. Using Proposition 5.2, it follows that n = 1 and π′ = π.
Since F and G are both global newforms, their adelizations are pure tensors of local newforms
at every finite place. Hence F and G are multiples of each other and M = N . Looking at the
archimedean place, we see that ` = k.

In Sect. 2.1 of [23] the type of a Siegel eigenform F was defined to be the type of the Arthur
packet containing (the adelization of) F . The subspace of Sk,j(Γ) spanned by all eigenforms of
type (G) is denoted by Sk,j(Γ)(G), and similarly for the other types.

5.4 Corollary. Let k and N be positive integers, and j a non-negative integer. Then

Sk,j(K(N)) = Sk,j(K(N))(G) ⊕ Sk,j(K(N))(P). (28)

If j > 0, then Sk,j(K(N))(P) = 0.

Proof. By Lemma 2.5 of [23], the space Sk,j(K(N))(Y) is zero. By Proposition 5.1, the spaces
Sk,j(K(N))(B) and Sk,j(K(N))(Q) are also zero. This proves (28). Table 2 shows that if a
packet of type (P) contains a lowest weight representation at the archimedean place, then this
representation must have scalar minimal K-type. Hence one cannot construct vector-valued
holomorphic cusp forms from packets of type (P).

The multiplicity one theorem for paramodular forms, Theorem 2.6 of [23], had a hypothesis
that forms be of type (G). This assumption can now be removed:

5.5 Theorem. Let N,N1, N2 and k, k1, k2 be positive integers, and j, j1, j2 be non-negative
integers.

i) Assume that F ∈ Sk,j(K(N)) is an eigenform for the unramified local Hecke algebra Hp
for almost all p not dividing N . Then F is an eigenform for Hp for all p - N . The cuspidal,
automorphic representation π of G(A) generated by the adelization of F is irreducible.
The conductor of π divides N , with equality if and only if F is a newform.
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ii) Let Fi ∈ Snew
ki,ji

(K(Ni)), i = 1, 2, be two eigenforms. Assume that for almost all primes p
the Hecke eigenvalues of F1 and F2 coincide. Then (k1, j1) = (k2, j2), N1 = N2, and F1 is
a multiple of F2.

Proof. Making use of Corollary 5.4 and Proposition 5.2 ii), the proof is similar to that of
Theorem 2.6 of [23].
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