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Abstract

Let A ∗ Γ be a crossed product algebra, where A is semisimple, finitely generated over its center and Γ is a finite group. We
give a necessary and sufficient condition in terms of the outer action of Γ on A for the existence of a multi-parametric semisimple
deformation of the form A((t1, . . . , tn)) ∗ Γ (with the induced outer action). The main tool in the proof is the solution of the
so-called twisting problem. We also give an example which shows that the condition is not sufficient if one drops the condition on
the finite generation of A over its center.
c© 2006 Elsevier B.V. All rights reserved.

MSC: 16K20

1. Introduction

Let R = A ∗ Γ be a crossed product algebra, where A is an artinian ring, finitely generated over its center, and
Γ a finite group. The purpose of this article is to provide a necessary and sufficient condition for the existence of a
semisimple homogeneous deformation of R. By this we mean a deformation of R which also has a crossed product
structure compatible with the structure of R (see Definition 1.5 below). It is shown that such a deformation must
essentially be given by purely inseparable extensions of the centers of the simple components of A. We show that
the necessary and sufficient condition mentioned above is not sufficient if one drops the requirement on A of being
finitely generated over its center.

Since our task is to construct semisimple crossed products, it is natural to ask in general when a (given) crossed
product A ∗ Γ (Γ finite) is semisimple artinian. Of course, one may answer this question in more than one way. A
satisfactory answer is given in [2], which is based on results from [4,10,12]. Let us sketch briefly the answer given
there.

To begin with, since A∗Γ is free over A, A∗Γ cannot be semisimple artinian unless A itself is semisimple artinian.
Therefore, we assume for the rest of the paper that the base ring A is semisimple artinian.
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Recall that a crossed product A ∗ Γ induces an action of Γ on the set of simple components Λ = {Ai }i∈I
of A. Let {Ai j } j∈J be a set of representatives for the orbits in Λ and let Γi j be the stabilizer of Ai j in Γ . Then
A ∗ Γ ∼=

∏
j∈J Mn j (Ai j ∗ Γi j ) with n j = [Γ : Γi j ]. The first step is

Proposition 1.1 ([10], Theorem 7.5). The crossed product A ∗ Γ is semisimple if and only if the induced crossed
products Ai j ∗ Γi j are semisimple for all j’s.

Next, consider a crossed product A ∗ Γ , where A is simple artinian. Let α : Γ → Out(A) be the induced
homomorphism (see (2.1) below) and denote its kernel by H . One shows that after a diagonal change of base elements,
the sub-crossed product A ∗ H is isomorphic to A ⊗Z(A) Z(A) f H , where Z(A) f H is a twisted group algebra over
the center Z(A), and f is a 2-cocycle of H with values in Z(A)∗ (see [2], Section 3). The second step is

Proposition 1.2 ([2], Theorem 3.3). The following are equivalent:

(1) A ∗ Γ is semisimple
(2) A ∗ H is semisimple
(3) Z(A) f H is semisimple.

The last part in the analysis is to determine when a twisted group algebra K f H is semisimple, where K is a field.
In the non-modular case, namely if ord(H) ∈ K ∗, the twisted group algebra is always semisimple. In the modular
case the answer is

Proposition 1.3 ([3], Theorem 2). Assume char(K ) = p and let P be a p-Sylow subgroup of H. Then K f H is
semisimple if and only if

(1) P = Z pβ1 × · · · × Z pβr = 〈σ1〉 × · · · × 〈σr 〉 is abelian and has a normal complement in H.

(2) Let (uσ1 , . . . , uσr ) be elements in K f H representing (σ1, . . . , σr ) and let u pβi
σi = αi ∈ K ∗. Then the elements

α1, . . . , αr are p-independent over the subfield K p (see Definition 2.3 below). Equivalently, the twisted group
algebra K f P is a purely inseparable field extension of K .

From Propositions 1.1–1.3 we easily obtain a necessary condition (which depends only on the outer action
α : Γ → Out(A)) for the semisimplicity of a crossed product R = A ∗ Γ :

Corollary 1.4. Let {Ai j } j be a set of simple representatives of the orbits and Γi j be their stabilizers as in
Proposition 1.1. Let Hi j = ker(αi j : Γi j → Out(Ai j )) and let Pi j be pi -Sylow subgroups of Hi j (in case
char(Z(Ai j )) = pi > 0). Then R = A ∗ Γ is semisimple only if for every i j such that pi > 0

(A) Pi j is abelian with normal complement in Hi j

(B) rank(Pi j ) ≤ pi -degree of Z(Ai j ) (see Definition 2.3 below).

Let R be a finite dimensional K -algebra. Let K ((t1, . . . , tn)) be the field of power series on n variables. Then an n-
parameter deformation of R is an associative K ((t1, . . . , tn))-algebra R′, whose structure as a K ((t1, . . . , tn))-vector
space is the same as R ⊗K K ((t1, . . . , tn)), such that the multiplication in R′ deforms the multiplication in the algebra
R((t1, . . . , tn)) = R ⊗K K ((t1, . . . , tn)):

x1 ∗ x2 = x1 · x2 +

∑
Ψi1,...,in (x1, x2)t

i1
1 . . . t in

n , x1, x2 ∈ R′. (1.1)

Here x1 · x2 is the original multiplication, and the sum runs over all i1, . . . , in ≥ 0 which are not all zeros. The
functions Ψi1,...,in are bilinear and satisfy associativity conditions; see [9].

We shall be interested in deformations of crossed products which preserve the original group graded structure:

Definition 1.5. Let R = A ∗ Γ be a crossed product. We say that a crossed product R′
= A((t1, . . . , tn)) ∗ Γ is an

n-parameter homogeneous deformation of R if the outer action α′ of Γ on A((t1, . . . , tn)) (induced from the crossed
product structure on R′) is the “same” as the outer action α on A induced from R = A ∗ Γ , that is, t1, . . . , tn are
central in R′ and i ◦ α = α′, where i : Out(A) → Out(A((t1, . . . , tn))) is the natural embedding.
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Clearly, by Corollary 1.4, R = A ∗ Γ admits a semisimple homogeneous deformation only if for all i ∈ I , Pi j is
abelian and has a normal complement in Hi j .

Our main result is to show that the condition above is sufficient provided that A is finitely generated over its center.

Theorem 1.6. Let R = A ∗ Γ be a crossed product, where Γ is finite and A is semisimple finitely generated over its
center. Assume (with the above notation) that each Pi j is abelian and has a normal complement in Hi j . Then there is
a semisimple n-parameter homogeneous deformation R′

= A((t1, . . . , tn)) ∗ Γ for some integer n ≥ 0.

It is natural to ask how many parameters are needed for such deformation of A ∗ Γ . To answer this question we let
Ai j ,Γi j , Hi j and Pi j be as above. Assume Pi j is abelian with normal complement in Hi j . By Theorem 1.6 there is an
n-parameter homogeneous semisimple deformation for some n ≥ 0. Let n0 = n(A ∗ Γ ) be the (minimal) number of
parameters needed to produce such a deformation.

Theorem 1.7. Let p(i) be the pi -degree of Z(Ai j ), then the minimal number of parameters is given by n0 =

maxi∈I {1, rank(Pi j ) − p(i)}.

Theorems 1.6 and 1.7 are derived from a positive answer to the Twisting Problem given in Section 3. The discussion
in this section is based on the solution of the Twisting Problem over fields in [3,4].

The question of under which conditions a given crossed product A ∗ Γ (Γ finite) is semisimple may be viewed
as a special case of the following problem: find necessary and sufficient conditions which imply that a given crossed
product A ∗Γ is relative semisimple, i.e. any A ∗Γ -module M which is projective over A is projective also over A ∗Γ
(see, e.g., [1,6,8]). We also refer the reader to [14] for a thorough treatment of the question of when a given crossed
product A ∗ Γ (A semiprime, Γ finite) is semiprime.

2. Preliminaries and a main lemma

The proof of Theorem 1.6 is based on a detailed analysis of the purely inseparable extensions contained in A ∗ Γ .
Derivation maps play an important role in this analysis, and in particular, the Jacobian map. In this section we recall
some preliminaries and prove a general Lemma 2.7 which will be essential in the proof of Theorem 1.6.

2.1

Recall that a Γ -graded algebra R(Γ ) = ⊕g∈Γ Rg with base ring A = Re is a crossed product if the component Rg
admits a unit ug for every g ∈ Γ . Then the set {ug : g ∈ Γ } is a basis of R(Γ ) as a right A-module and there are maps

β : Γ → Aut(A), f : Γ × Γ → A∗

called the action and twisting respectively (A∗ denotes the group of units of A). They are defined by

aug = ugaβ(g), uguh = ugh f (g, h)

for every g, h ∈ Γ and a ∈ A. We usually simplify the notation and write ag for aβ(g). The action and twisting satisfy
the following conditions:

f (g1g2, g3) f (g1, g2)
β(g3) = f (g1, g2g3) f (g2, g3), β(g1g2)ι f (g1,g2) = β(g1)β(g2) (2.1)

for every g1, g2, g3 ∈ Γ (where ιa means conjugation by a ∈ A∗). By (2.1), the map β induces a homomorphism
α : Γ → Out(A) which restricts to an action of Γ on Z(A). The action and twisting above depend on the choice of
the set {ug : g ∈ Γ }. Another choice of basis {vg : g ∈ Γ } yields an action β ′ and a twisting f ′. Since the bases
satisfy vg = λgug, λg ∈ A∗, g ∈ Γ , it follows that β ′(g) differs from β(g) by inner automorphisms for every g ∈ Γ ,
and thus induces the same outer action α. Furthermore, the twistings satisfy f ′

= f c, where c : Γ × Γ → Z(A)∗

is a 2-coboundary. If Eqs. (2.1) are satisfied, we say that the twisting f (or, alternatively, the corresponding crossed
product) realizes the outer action α which is induced by β. If we want to emphasize the action and the twisting we
denote the corresponding crossed product by A f

α ∗ Γ .
Fix β : Γ → Aut(A) and f : Γ ×Γ → A∗ as above. Then the set of all the twistings that realize the induced outer

action α is given by
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Proposition 2.1 ([7,13], See Also [2], Proposition 4.1).

(1) If β : Γ → Aut(A) and f0 : Γ × Γ → A∗ satisfy conditions (2.1), then all the twistings that realize the outer
action α (induced from β) are of the form f ′

= f0g′, where g′
: Γ × Γ → Z(A)∗ is a 2-cocycle.

(2) The crossed products A ∗ Γ admitting an outer action α : Γ → Out(A) are classified by H2(Γ , Z(A)∗).

Proposition 2.1 allows us to characterize an n-parameter homogeneous deformation of a crossed product A f0
α ∗ Γ .

Corollary 2.2. Let A((t1, . . . , tn))
f0
α ∗Γ = A((t1, . . . , tn)) ⊗A A f0

α ∗Γ be a crossed product obtained by an extension
of scalars ( f0 takes its values in A∗). Then R′

= A((t1, . . . , tn))
f ′

α ∗ Γ is an n-parameter homogeneous deformation
of A f0

α ∗Γ if f ′
= f0g′ for some 2-cocycle, g′

: Γ ×Γ → Un , where Un = {1+
∑n

i=1 ti ai | ai ∈ Z(A[[t1, . . . , tn]])}

is the subgroup of 1-units of Z(A[[t1, . . . , tn]])∗.

2.2

Proposition 1.3, Corollary 1.4, Theorem 1.7 involve p-independence and p-degree. Here are the precise definitions:

Definition 2.3. Let K1 ⊂ K2 be an extension of fields of characteristic p > 0. A subset S ⊂ K2 is said to be
p-independent over K1 if K1(K p

2 )(T ) 6= K1(K p
2 )(S) for any proper subset T ⊂ S. We say that p- deg(K ) = r if

there is a subset S ⊂ K of cardinality r which is p-independent over K p such that K p(S) = K . Such S is called a
p-basis of K (over K p).

Let K1 ⊂ K2 be an extension of fields. Recall that a derivation of K2 over K1 is a K1-linear map ∂ : K2 → K2
with ∂(xy) = x∂(y) + y∂(x)∀x, y ∈ K2.

Given derivations ∂1, . . . , ∂r of K2 over K1, the Jacobian map with respect to ∂1, . . . , ∂r is defined by

J = J∂1,...,∂r : (K2)
r

→ K2

J (y(1), . . . , y(r)) = det[∂i (y( j))].

The following is a criterion for p-independence:

Theorem 2.4 (See [17] Section 4.3). Let K1 ⊂ K2 be an extension of fields, then the elements y(1), . . . , y(r)
∈ K2

are p-independent over K1 if and only if there exist derivations ∂1, . . . , ∂r of K2 over K1 such that the Jacobian
J (y(1), . . . , y(r)) with respect to ∂1, . . . , ∂r does not vanish.

Corollary 2.5. Let K be a field of characteristic p > 0 and let K ((t1, . . . , tn)) be the field of power series on n
indeterminates over K . Then p- deg(K ((t1, . . . , tn))) = p- deg(K ) + n.

Proof. Let r = p- deg(K ) (if the p-degree is infinite, the corollary follows at once). Let {y(1), . . . , y(r)
} be a p-basis

of K . Then we claim that {y(1), . . . , y(r), t1, . . . , tn} is a p-basis of K ((t1, . . . , tn)). Clearly, K p(y(1), . . . , y(r)) = K .
Hence (K ((t1, . . . , tn)))p(y(1), . . . , y(r), t1, . . . , tn) = K ((t1, . . . , tn)). Next, let ∂1, . . . , ∂r be derivations of K over
K p, such that J∂1,...,∂r (y(1), . . . , y(r)) 6= 0 as provided by Theorem 2.4. Extend these derivations to K ((t1, . . . , tn))

trivially and add the n derivations ∂
∂t1

, . . . , ∂
∂tn

of K ((t1, . . . , tn)). Then

J
∂1,...,∂r ,

∂
∂t1

,..., ∂
∂tn

(y(1), . . . , y(r), t1, . . . , tn) = J∂1,...,∂r (y(1), . . . , y(r)) 6= 0

and hence {y(1), . . . , y(r), t1, . . . , tn} are p-independent over (K ((t1, . . . , tn)))p. �

Lemma 2.6 (See [3], Lemma 13). Let K1 ⊂ K2 be a finite separable extension of fields of characteristic p > 0. Then
p- deg(K1) = p- deg(K2).

Proof. Let X be a p-basis of K1 over K p
1 . We claim that X serves also as a p-basis of K2 over K p

2 . To prove that
the set X remains p-independent over K p

2 , extend a base of K1 over K p
1 to a base of K2 over K p

1 and then extend
the derivations of K1 whose existence is guaranteed by Theorem 2.4 trivially on the new elements of the base. This
extension does not change the original Jacobian.
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Next, we need to prove that K p
2 (X) = K2. If this is false, there exists an element y ∈ K2 r K p

2 (X). But then the
polynomial P(t) = t p

− y p is irreducible over K p
2 (X) and hence K p

2 (X) ⊂ K2 is not separable. This contradicts the
separability assumption since K1 = K p

1 (X) ⊂ K p
2 (X) ⊂ K2. �

Note that the Jacobian satisfies J (y(1), . . . , y(i)
1 y(i)

2 , . . . , y(r)) = y(i)
1 J (y(1), . . . , y(i)

2 , . . . , y(r)) + y(i)
2 J (y(1),

. . . , y(i)
1 , . . . , y(r)). Inductively

J

(
y(1), . . . ,

m∏
k=1

y(i)
k , . . . , y(r)

)
=

m∑
k=1

(∏
l 6=k

y(i)
l

)
J (y(1), . . . , y(i)

k , . . . , y(r)). (2.2)

Applying (2.2) in each component yields

J

(
m∏

k=1

y(1)
k ,

m∏
k=1

y(2)
k , . . . ,

m∏
k=1

y(r)
k

)
= β ·

∑
1≤l1,...,lr ≤m

J (y(1)
l1

, y(2)
l2

, . . . , y(r)
lr )

r∏
j=1

y( j)
l j

, (2.3)

where β =
∏

j,k y( j)
k (1 ≤ k ≤ m, 1 ≤ j ≤ r).

From (2.3) we obtain the following

Lemma 2.7. Let K1 ⊂ K2 be an extension of fields and let J = J∂1,...,∂r be the Jacobian map with respect to some
K1-linear derivations ∂1, . . . , ∂r . Let r, m be two (positive) integers such that r < m. Then, for any m · r elements
y( j)

k , 1 ≤ k ≤ m, 1 ≤ j ≤ r in K2

∑
B⊂{1,2,...,m}

(−1)|B|
·

J
( ∏

k∈B
y(1)

k ,
∏

k∈B
y(2)

k , . . . ,
∏

k∈B
y(r)

k

)
r∏

j=1

∏
k∈B

y( j)
k

= 0. (2.4)

(Here B runs over all subsets of {1, 2, . . . , m}.)

Proof. First, we decompose the summation according to (2.3) (until none of the summands contain products inside

the Jacobian). Then we compute the coefficient of every summand
J (y(1)

l1
,y(2)

l2
,...,y(r)

lr )∏r
j=1 y( j)

l j

, 1 ≤ l1, . . . , lr ≤ m. Any

L = {l1, . . . , lr } appears exactly once in every summand of (2.4) that corresponds to a set B ⊇ L . Suppose
|L| = l(≤ r < m), then the number of sets B ⊆ {1, 2, . . . , m} of cardinality s ≥ l containing L is

(
m−l
s−l

)
.

Since l ≤ r < m, the contribution of
J (y(1)

l1
,y(2)

l2
,...,y(r)

lr )∏r
j=1 y( j)

l j

to the summation is

m∑
s=l

(−1)s
(

m − l
s − l

)
= (−1)l

m−l∑
i=0

(−1)i
(

m − l
i

)
= 0. �

3. The twisting problem

Our strategy for the proof of Theorem 1.6 is as follows. We first show that if A f0
α ∗ Γ is a crossed product, if A is

finitely generated as a module over its center and if conditions (A) and (B) in Corollary 1.4 are satisfied, then there
exists a 2-cocycle g′

: Γ × Γ → Z(A)∗ such that A f0g′

α ∗ Γ is semisimple.
Next, suppose that A f0

α ∗ Γ satisfies the hypothesis of Theorem 1.6. It is then clear that A f0
α ∗ Γ and therefore

A((t1, . . . , tn))
f0
α ∗ Γ satisfy condition (A) and so if n is large enough condition (B) will be satisfied as well (see

Corollary 2.5) and hence by the first step one can find a 2-cocycle g′
: Γ × Γ → Z(A((t1, . . . , tn)))∗ such that

A((t1, . . . , tn))
f0g′

α ∗ Γ is semisimple.
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The last step (done in Section 4) is to show that such g′ may be chosen so that it takes its values in the group
Un ⊂ Z(A[[t1, . . . , tn]])∗ of 1-units (see Corollary 2.2).

We start by recalling the twisting problem.
The twisting problem: Let A f0

α ∗ Γ be a given crossed product and assume the necessary conditions (for
semisimplicity) (A) and (B) are satisfied. Does there exist a semisimple crossed product A f ′

α ∗ Γ ?
The twisting problem was solved in [3,4] in the case when A = K is a (commutative) field.
In [2] there is a solution of the twisting problem in the case when Γ is cyclic and A is finitely generated as a module

over its center.
We show that the twisting problem has a positive answer in the case when A is finitely generated as a module over

its center.

Theorem 3.1. Let A f0
α ∗ Γ be a crossed product, where A is a semisimple algebra which is finitely generated as a

module over its center. Assume the necessary conditions (for semisimplicity) (A) and (B) are satisfied. Then there
exists a semisimple crossed product A f ′

α ∗ Γ .

The first and main part of the construction of the twisting f ′ is in case A is a central simple algebra. This is done in
Section 3.1. Then, in Section 3.2, we show how to extend the construction of a semisimple crossed product to the case
where A is semisimple (and finitely generated over its center) and the induced action of Γ on the simple components
of A is transitive (i.e. the number of orbits is 1). Finally, in Section 3.3, we extend the construction to any number of
orbits.

3.1. Central simple base ring

Let A be a central simple algebra and let A f0
α ∗ Γ be a crossed product. We need to show that if the field Z(A) and

the group Γ satisfy conditions (A) and (B), then there exists a twisting f ′
: Γ × Γ → A∗ (realizing the outer action

α) such that A f ′

α ∗ Γ is semisimple. In view of Proposition 2.1 we have to find a 2-cocycle g′
: Γ × Γ → Z(A)∗ such

that A f0g′

α ∗ Γ is semisimple.
Recall (Proposition 1.2) that such a crossed product A f0g′

α ∗ Γ is semisimple if and only if the twisted group ring
Z(A) f0g′|H H is semisimple, where H = ker(α) C Γ . Hence, if we denote by f = f0|H : H × H → Z(A)∗ (the
restriction of f0 to the subgroup H ), the twisting problem will be solved if we find a 2-cocycle g : H × H → Z(A)∗

such that Z(A) f g H is semisimple and the class [g] is in the image of resΓH : H2(Γ , Z(A)∗) → H2(H, Z(A)∗). It is
therefore sufficient to prove the following

Theorem 3.2. Let Γ be a finite group, K a field of characteristic p > 0, and η : Γ → Aut(K ) an action of Γ on K
with kernel H. Let [ f ] ∈ H2(H, K ∗) be any class. Then there is a class [g] ∈ Im(resΓH : H2(Γ , K ∗) → H2(H, K ∗))

such that K f ·g H is semisimple if and only if any p-Sylow subgroup P of H is abelian with a normal complement in
H and further the rank of P does not exceed the p-degree of K over K p.

Note that the case where f ≡ 1 is solved in [4].

Proof of Theorem 3.2. We first assume that H is a p-group and hence abelian. Let H = ⊕1≤i≤r Z/pei Z =

〈x1〉 ⊕ · · · ⊕ 〈xr 〉. We have r = rank(H) ≤ p- deg(K ).
We need the following result:

Proposition 3.3 (See also [3], Proposition 9). Let K be a field of characteristic p > 0, and Q a finite subgroup of
Aut(K ). Let S ⊂ K ∗ be a Q-submodule and let M be a Zpe Q-module. Then

H2(M, S) ' HomZpe (M, S/S pe
).

Furthermore, taking Q-invariants

H2(M, S)Q
' HomZpe Q(M, S/S pe

).

Proof. Since the Schur multiplier H2 M is a p-group and since S has no p-torsion, it follows that Hom(H2 M, S) =

0. Hence, by the Universal Coefficients Theorem, H2(M, S) is isomorphic with Ext(M, S) and therefore with
HomZpe (M, S/S pe

). �
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We apply Proposition 3.3 for M = H , e = max1≤i≤r {ei } and Q = Γ/H . The action of Q on H is determined by
the group extension (H is abelian) 1 → H → Γ → Γ/H = Q → 1.

Let [γ ] ∈ H2(H, K ∗) and let µγ : H → K ∗/(K ∗)pe
be the corresponding Zpe -morphism from Proposition 3.3

(here S is K ∗ itself). Then µγ may be represented by an r -tuple (w
pe−e1

1 (K ∗)pe
, w

pe−e2

2 (K ∗)pe
, . . . , w

pe−er
r (K ∗)pe

),

where µγ (xi ) = w
pe−ei

i (K ∗)pe
∈ K ∗/(K ∗)pe

. Furthermore, there exist a K -basis {uh}h∈H of the twisted group

algebra K γ H such that u pei
xi = wi ∈ K ∗. Hence, by Proposition 1.3 K γ H is semisimple if and only if the elements

w1, w2, . . . , wr are p-independent over K p.
Let ( f pe−e1

1 (K ∗)pe
, . . . , f pe−er

r (K ∗)pe
) be the r -tuple which corresponds to our element (of Theorem 3.2)

[ f ] ∈ H2(H, K ∗). By the preceding paragraphs, solving the twisting problem reduces to finding an r -tuple
(g pe−e1

1 (K ∗)pe
, . . . , g pe−er

r (K ∗)pe
), gi ∈ K ∗ such that the corresponding element [g] ∈ H2(H, K ∗) is in the image of

the restriction map resΓH : H2(Γ , K ∗) → H2(H, K ∗) and such that the elements fi gi , 1 ≤ i ≤ r are p-independent
over K p. Since the image of resΓH is contained in H2(H, K ∗)Q , it follows by Proposition 3.3 that for any such g, the

map µg : H → K ∗/(K ∗)pe
given by µg(xi ) = g pe−ei

i (K ∗)pe
, 1 ≤ i ≤ r should be Zpe Q-linear.

The following result will be useful in finding elements in the image of resΓH : H2(Γ , K ∗) → H2(H, K ∗)Q .

Theorem 3.4 (See [3], Proof of Theorem 5). With the above notation, let S ⊂ K ∗ be a Q-submodule such that S/S p

is free over Zp Q p, where Q p is a p-Sylow subgroup of Q. Then the restriction map H2(Γ , S)
res

−→ H2(H, S)Q is
surjective.

Proof. Since S/S p is free over Zp Q p and since S has no p-torsion we obtain that for every q > 0, Hq(Q p, S) = 0
(see [16], page 143, Thm. 6). Next, the composition Hq(Q, S)

res
−→ Hq(Q p, S)

cor
−→ Hq(Q, S) is multiplication by

|Q : Q p|, which is coprime to p, and hence (Hq(Q, S))p
res

−→ Hq(Q p, S) is injective, where (Hq(Q, S))p is the
p-part of Hq(Q, S). It follows that (Hq(Q, S))p = 0 for every q > 0. Now, since H is an abelian p-group and S
has no p-torsion we obtain H1(H, S) = 0. Then the LHS spectral sequence yields the exact sequence (see [15], page
305, 11.3)

H2(Γ , S)
res

−→ H2(H, S)Q d
−→ H3(Q, S).

Since H2(H, S)Q is a p-group, the image of d is in (H3(Q, S))p and we are done. �

We wish to find appropriate elements g1, . . . , gr in a Q-submodule S ⊂ K ∗ such that S/S p is free over Q. Suppose
that such a submodule S exists and denote its embedding in K ∗ by ι. Consider the commutative diagram

H2(Γ , K ∗)
res

−→ H2(H, K ∗)Q

ι∗ ↑ ι∗ ↑

H2(Γ , S)
res

−→ H2(H, S)Q
. (3.1)

The element [g] = (g pe−e1

1 (K ∗)pe
, . . . , g pe−er

r (K ∗)pe
) ∈ H2(H, K ∗)Q is the image under ι∗ of

(g pe−e1

1 S pe
, . . . , g pe−er

r S pe
) ∈ H2(H, S)Q , and by Theorem 3.4 comes from H2(Γ , S). Hence [g] is restricted from

H2(Γ , K ∗). And indeed, such a submodule S ⊂ K ∗ was constructed in [4]. Before we recall the construction we
make the following definition: an element z ∈ K is called Q-normal if σ(z) 6= z for every 1 6= σ ∈ Q.

Proposition 3.5 ([4], Propositions 1, 2). Let p- deg(K ) ≥ r . Then for all but finitely many Q-normal elements z ∈ K
there exist p-independent elements (over K p) a1, . . . , ar in K Q satisfying
(1) Let S be the Q-submodule of K ∗ generated by the elements {1 + ak z p

}1≤k≤r , then F = S/S pe
is freely generated

by (1 + ak z p)S pe
over Zpe Q.

(2) The elements b j =
∏r

k=1
∏

σ∈Q(1 + akσ(z)p)(σ
−1(x j ))k ∈ S, 1 ≤ j ≤ r are p-independent over K p, where (h)k

is defined by h =
∏r

k=1 x (h)k
k ∈ H.

Furthermore, for any choice of r elements {c1, . . . , cr } ⊂ K Q which are p-independent over K p there are elements
{u1, . . . , ur } ⊂ (K Q)p such that ai = ci ui , and once u1, . . . , ui−1 have been chosen, all but a finite number of
elements of (K Q)p qualify as ui .
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We shall assume for the rest of this section that r = rank(H) > 0 (the case r = 0 means that H is a p′-
group and Theorem 3.2 is obvious). Under this assumption K is not perfect and hence infinite. Therefore, elements
z, a1, . . . , ar ∈ K satisfying Proposition 3.5 do exist. Taking such r + 1 elements, we let

y( j)
k =

∏
σ∈Q

(1 + akσ(z)p)(σ
−1(x j ))k , 1 ≤ k, j ≤ r. (3.2)

Note that the elements b j in Proposition 3.5(2) may be written as b j =
∏r

k=1 y( j)
k , 1 ≤ j ≤ r .

Proposition 3.6. For any 1 ≤ k ≤ r the map µk : H → S/S pe
given by µk(x j ) = y( j)

k S pe
, 1 ≤ j ≤ r is Zpe

Q-linear. Moreover, under the isomorphism in Proposition 3.3, µk corresponds to a cohomology class in the image
of the restriction map resΓH : H2(Γ , S) → H2(H, S)Q .

Proof. Let g ∈ Q. For every 1 ≤ j ≤ r , let g(x j ) =
∏r

i=1 x
ni, j
i , where ni, j = ni, j (g). Then

µk(g(x j )) =

r∏
i=1

µk(xi )
ni, j =

r∏
i=1

∏
σ∈Q

(1 + akσ(z)p)(σ
−1(xi ))k ni, j

=

∏
σ∈Q

(1 + akσ(z)p)

r∑
i=1

(σ−1(xi )
ni, j )k

. (3.3)

Note that (σ−1(g(x j )))k = (σ−1(
∏r

i=1 x
ni, j
i ))k = (

∏r
i=1(σ

−1(x
ni, j
i )))k =

∑r
i=1(σ

−1(xi )
ni, j )k . Hence (3.3) becomes

µk(g(x j )) =

∏
σ∈Q

(1 + akσ(z)p)(σ
−1(g(x j )))k =

∏
τ∈Q

(1 + ak gτ(z)p)(τ
−1(x j ))k = g(µk(x j )). (3.4)

Hence µk is Zpe Q-linear.
For the second part we use Theorem 3.4. We need to show that S/S p is free over Zp Q p, where Q p is a p-Sylow

subgroup of Q. Indeed, this requirement is valid since, by Proposition 3.5, F = S/S pe
is free over Zpe Q. �

Corollary 3.7. With the above notation, the element (bpe−e1

1 S pe
, . . . , bpe−er

r S pe
) ∈ H2(H, S) is in the image of the

restriction map resΓH : H2(Γ , S) → H2(H, S)Q .

Proof. By Proposition 3.6, for every 1 ≤ k ≤ r there exists [y′

k] ∈ H2(Γ , S) such that resΓH ([y′

k]) =

(y(1)
k

pe−e1
S pe

, . . . , y(r)
k

pe−er

S pe
). Thus, resΓH (

∑r
k=1[y′

k]) = (bpe−e1

1 S pe
, . . . , bpe−er

r S pe
). �

Observe that the element [ĝ] = (bpe−e1

1 (K ∗)pe
, . . . , bpe−er

r (K ∗)pe
) solves the twisting problem in the case when

f ≡ 1. This follows from the construction in Proposition 3.5 that provides the p-independence of the elements
{b j }

r
j=1, and from Corollary 3.7, which says that [ĝ] is in fact an image under resΓH : H2(Γ , K ∗) → H2(H, K ∗)Q .

In the general case (when f is not necessarily 1) we will need a variation of [ĝ]. The class [ĝ] is decomposed
into the r classes determined by the products

∏r
k=1 y( j)

k (= b j ). Then we “glue” these classes again in a suitable way
(based on the given f ).

Proposition 3.8. For any [ f ] = ( f pe−e1

1 (K ∗)pe
, . . . , f pe−er

r (K ∗)pe
) ∈ H2(H, K ∗) there exists B( f ) ⊂ {1, 2, . . . , r}

such that the elements f1 ·
∏

k∈B( f ) y(1)
k , . . . , fr ·

∏
k∈B( f ) y(r)

k are p-independent.

Proof. By Proposition 3.5(2), the elements b1, . . . , br are p-independent over K p. By Theorem 2.4, there exist K p-
linear derivations ∂1, . . . , ∂r : K → K such that

J (b1, b2, . . . , br ) = J

(
r∏

k=1

y(1)
k ,

r∏
k=1

y(2)
k , . . . ,

r∏
k=1

y(r)
k

)
6= 0, (3.5)

where J = J∂1,...,∂r . For convenience, we denote

y( j)
r+1 = f j , 1 ≤ j ≤ r.
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Plugging y( j)
k , 1 ≤ k ≤ m = r + 1, 1 ≤ j ≤ r in (2.4), we have

∑
B⊂{1,...,r+1}

(−1)|B|
·

J
( ∏

k∈B
y(1)

k ,
∏

k∈B
y(2)

k , . . . ,
∏

k∈B
y(r)

k

)
r∏

j=1

∏
k∈B

y( j)
k

= 0. (3.6)

We decompose this sum into two summands Σ1 + Σ2 = 0, where

Σ1 =

∑
r+16∈B

(−1)|B|
·

J
( ∏

k∈B
y(1)

k ,
∏

k∈B
y(2)

k , . . . ,
∏

k∈B
y(r)

k

)
r∏

j=1

∏
k∈B

y( j)
k

.

Σ2 =

∑
r+1∈B

(−1)|B|
·

J
( ∏

k∈B
y(1)

k ,
∏

k∈B
y(2)

k , . . . ,
∏

k∈B
y(r)

k

)
r∏

j=1

∏
k∈B

y( j)
k

.

Clearly, if Σ2 6= 0, then for some B ⊂ {1, 2, . . . , r + 1} with r + 1 ∈ B

J

(∏
k∈B

y(1)
k ,

∏
k∈B

y(2)
k , . . . ,

∏
k∈B

y(r)
k

)
6= 0.

This would imply for B( f ) = B \{r +1} that the elements f1 ·
∏

k∈B( f ) y(1)
k , . . . , fr ·

∏
k∈B( f ) y(r)

k are p-independent
over K p as desired.

In order to prove that Σ2 does not vanish, we show that Σ1 6= 0. By (3.5) we have J (b1, b2, . . . , br ) 6= 0
and hence the term in Σ1 which corresponds to B0 = {1, 2, . . . , r} is nonzero. To prove that Σ1 6= 0 we
show that all other terms in Σ1 (i.e. terms that correspond to proper subsets of {1, 2, . . . , r}) vanish. Indeed, by
the definition of y( j)

k in Proposition 3.5, we have that y( j)
k ∈ K p(ak) for all 1 ≤ j, k ≤ r . It follows that

{
∏

k∈B y(1)
k ,

∏
k∈B y(2)

k , . . . ,
∏

k∈B y(r)
k } ⊂ K p({ak}k∈B). Now, if B ( {1, 2, . . . , r} then p- deg(K p({ak}k∈B)) < r

and hence the elements
∏

k∈B y(1)
k ,

∏
k∈B y(2)

k , . . . ,
∏

k∈B y(r)
k are p-dependent over K p. By Theorem 2.4 we obtain

J

(∏
k∈B

y(1)
k ,

∏
k∈B

y(2)
k , . . . ,

∏
k∈B

y(r)
k

)
= 0, B ( {1, 2, . . . , r}. � (3.7)

We now return to the hypothesis of Theorem 3.2. Let [ f ] = ( f pe−e1

1 (K ∗)pe
, . . . , f pe−er

r (K ∗)pe
) ∈ H2(H, K ∗)

be any class. Then, under the conditions of the theorem, Proposition 3.8 says that there exists a subset B = B( f ) ⊂

{1, 2, . . . , r} such that A f ·ι∗gB ∗ H is semisimple, where

[gB] =

(∏
k∈B

(y(1)
k )pe−e1

(S)pe
, . . . ,

∏
k∈B

(y(r)
k )pe−er

(S)pe

)
∈ H2(H, S). (3.8)

By Proposition 3.6, [gB] is in the image of H2(Γ , S)
res

−→ H2(H, S), and by the commutative diagram (3.1),
[ι∗gB] = ι∗[gB] is in the image of H2(Γ , K ∗)

res
−→ H2(H, K ∗). This completes the proof of Theorem 3.2 in the

case when H is a p-group.
We now drop the assumption of H being a p-group. Let P < H be a p-Sylow subgroup of H and let N C H

be its normal complement in H . Then N = {h ∈ H : p - o(h)} and hence is normal in Γ . Put Γ̄ = Γ/N
and H̄ = H/N . The above conditions yield a natural isomorphism Ψ : P → H̄ which induces an isomorphism
Ψ∗ : H2(H̄ , K ∗) → H2(P, K ∗).

Let τ̄ : Γ̄ → Aut(K ) be the induced action with ker(τ̄ ) = H̄ and let [ f̄ ] = Ψ−1
∗ (resH

P ([ f ])) ∈ H2(H̄ , K ∗), where

[ f ] is the given element in H2(H, K ∗). Since H̄ is a p-group, there exists [ḡ] ∈ H2(Γ̄ , K ∗) such that K (resΓ̄
H̄

ḡ)· f̄ H̄ is
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semisimple. Letting [g] = resΓH (infΓ
Γ̄

(ḡ)) ∈ H2(H, K ∗), we have resH
P ([g · f ]) = Ψ∗((resΓ̄

H̄
[ḡ]) · [ f̄ ]), and therefore

K resH
P (g· f ) P ' K (resΓ̄

H̄
ḡ)· f̄ H̄ , which is semisimple. By Proposition 1.3 (see also [2] Theorem 3.3, 5 ⇐ 6) K g· f H is

semisimple. �

3.2. Transitive action on the simple components

Let A = A1 ⊕ · · · ⊕ As be semisimple and finitely generated over its center Z(A) = K1 ⊕ · · · ⊕ Ks . In this step
we assume that the induced action of Γ on the simple components of A is transitive. That is for every i = 1, . . . , s
there is an element σi ∈ Γ such that σi (A1) = Ai . We assume of course that a crossed product A f0

α ∗ Γ is given.
Let Γ1 = stabΓ (A1). Restricting f0|Γ1×Γ1

: Γ1 × Γ1 → A∗
=
∏s

i=1 A∗

i and projecting onto the first component
we obtain the twisting f̂0 = proj ◦ resΓΓ1

( f0) : Γ1 × Γ1 → A∗

1. By the preceding step there is a 2-cocycle

ĝ : Γ1 × Γ1 → K ∗

1 such that the crossed product A1
f̂0 ĝ
α|Γ1

∗ Γ1 is semisimple. Now, by Shapiro’s Lemma (see [5], page

73, Prop. 6.2) the map proj ◦ resΓΓ1
induces an isomorphism

H2

(
Γ ,

s∏
i=1

K ∗

i

)
→ H2(Γ1, K ∗

1 ).

The inverse is corΓΓ1
◦ i , which is the composite of the embedding of K ∗

1 into
∏s

i=1 K ∗

i and the correstriction map.

We wish to show that the crossed product A f ′

α ∗ Γ twisted by f ′
= f0(cor ◦ i(ĝ)) : Γ × Γ → A∗ is semisimple.

Indeed, restricting to Γ1 and projecting the values to A1 gives proj ◦ resΓΓ1
( f ′) = proj ◦ resΓΓ1

( f0(cor ◦ i(ĝ)))

= proj ◦ resΓΓ1
( f0) · ĝ = f̂0ĝ.

By Proposition 1.1, since the crossed product A1
f̂0 ĝ
α|Γ1

∗ Γ1 is semisimple, so is the crossed product A f ′

α ∗ Γ .

3.3. General action

Assume now that the induced action of Γ on the simple components of A determines l ≥ 1 orbits. Let A j be the

direct sum of the simple components in the j th orbit and let f j , j = 1, . . . , l be the twisting such that A j
f j
α ∗ Γ is

semisimple. Then the algebra A
∏l

j=1 f j
α ∗ Γ is semisimple. This completes the proof of Theorem 3.1. �

We end this section with the following counterexample which shows that the condition in Theorem 3.1 on the finite
generation of A over its center cannot be omitted.

Let D = F2(t)t2
(X, Y ) be the skew field of fractions generated by X and Y over F2(t), defined by the relation

XY = t2Y X . Note that D is infinite dimensional over its center F2(t). We define an automorphism σ̄ of D by
X σ̄

= X, Y σ̄
= tY . Since σ̄ 2 acts as conjugation by X , we obtain an outer action α of C2 = 〈σ̄ 〉 on D. Let

f̃ : C2 × C2 → D∗ be the following twisting: f̃ (1, 1) = f̃ (1, σ̄ ) = f̃ (σ̄ , 1) = 1, f̃ (σ̄ , σ̄ ) = X (see Example
4.2 in [2]). Now, consider the outer action of the quaternion group Q8 = 〈σ, τ : σ 4

= e, τστ−1
= σ−1, σ 2

= τ 2
〉

on D via its quotient C2 = 〈σ̄ 〉 = Q8/〈τ 〉. One can inflate the twisting f̃ to a twisting f0 : Q8 × Q8 → D∗.
Note that f0 vanishes on the kernel 〈τ 〉 of the outer action. By Proposition 2.1 every twisting on Q8 is of the
form f0g for some [g] ∈ H2(Q8, F2(t)∗). We claim that any such element [g] ∈ H2(Q8, F2(t)∗) vanishes on
the commutator 〈τ 2

〉 and hence any twisting f0g is trivial on 〈τ 2
〉. Indeed, since the Schur multiplier M(Q8) is

trivial, Hom(M(Q8), F2(t)∗) = 0. Hence, by the Universal Coefficient Theorem (see [11] Theorem 15.1, p. 222), any
element in H2(Q8, F2(t)∗) is inflated from H2((Q8)Ab, F2(t)∗) and thus trivial on the commutator.

It follows that any crossed product D f0g
α ∗ Q8 contains the group ring DC2 with respect to the subgroup C2 = 〈τ 2

〉

and therefore is not semisimple. Nevertheless, the conditions for the twisting problem are satisfied in this case: the
kernel of the outer action is 〈τ 〉 of rank one, which is exactly the p-degree of F2(t), the center of D.
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4. Homogeneous deformations

In this section we prove Theorems 1.6 and 1.7. We shall do it for A central simple. The proof of the general case,
namely when A is semisimple finitely generated over its center, goes along the general lines of Sections 3.2 and 3.3.

Recall from the beginning of Section 3 that, in order to complete the proof of Theorem 1.6, we add sufficiently
many indeterminates t1, . . . , tn so as to satisfy condition (B) in Corollary 1.4. The last step is to show that a 2-cocycle
g′

: Γ × Γ → Z(A((t1, . . . , tn)))∗, such that A((t1, . . . , tn))
f0g′

α ∗ Γ is semisimple, may be chosen so that it takes its
values in the group Un ⊂ Z(A[[t1, . . . , tn]])∗ of 1-units (see Corollary 2.2). Theorem 1.7 (for central simple algebras)
will be proved if we show in addition that n can be taken as λ = max{1, r − p- deg(Z(A))} (by Section 3 it is clear
that any smaller number cannot be suitable since condition (B) in Corollary 1.4 is not satisfied).

We first deal with the 2-cocycle g : H × H → Z(A((t1, . . . , tn)))∗ that lifts to g′. Since g = gB is constructed by
products of the elements y( j)

k (see Eq. (3.8)), we need the following

Proposition 4.1. Let K = Z(A((t1, . . . , tλ))), where λ = max{1, r − p- deg(Z(A))}. Then the Q-submodule S ⊂ K ∗

in Proposition 3.5 can be chosen so that S ⊂ Uλ ⊂ Z(A[[t1, . . . , tλ]])∗.

Proof. Recall from Proposition 3.5 that the submodule S ⊂ K ∗ is generated by elements dk = 1 + ak z p, 1 ≤ k ≤ r ,
where z ∈ K and a1, . . . , ar ∈ K Q . We need to show that z, a1, . . . , ar may be chosen so that the dk’s are 1-units.

Take c1, . . . , cr as follows. For 1 ≤ i ≤ λ let ci = ti . For λ < i ≤ r let ci be any p-independent set in Z(A)Q .
This can be done since r − λ ≤ p- deg(Z(A)) = p- deg(Z(A)Q), where the latter equality follows from Lemma 2.6.

Next, we have to find an appropriate Q-normal element z ∈ K .
In the case when Z(A) is infinite, there are infinitely many Q-normal elements z ∈ Z(A), thus there exists at least

one that satisfies Proposition 3.5.
If Z(A) is finite, it might happen that no z ∈ Z(A) qualifies. In this case take any normal basis {σ(z0)}σ∈Q of

Z(A) over Z(A)Q . The element z can now be chosen from the infinite set {z0t i
1}i≥0.

Finally, we may demand that for each 1 ≤ i ≤ r , ui can be chosen from the infinite subset {t j p
1 } j≥1 ⊂ (Z(A)Q)p.

The choices of c1, . . . , cr , z, u1, . . . , ur above guarantee that for all 1 ≤ k ≤ r the elements 1 + akσ(z)p

∈ 1 + t1 Z(A[[t1, . . . , tλ]])∗ ⊂ Uλ. This completes the proof of Proposition 4.1. �

From Proposition 4.1 we obtain that the elements y( j)
k =

∏
σ∈Q(1 + akσ(z)p)(σ

−1(x j ))k , 1 ≤ k, j ≤ r given in
Eq. (3.2) can be chosen to be 1-units. It follows that the 2-cocycle g = gB which was constructed in Eq. (3.8) can take
its values in S ⊂ Uλ.

From Theorem 3.4 we obtain that g is restricted from a 2-cocycle g′
: Γ ×Γ → S such that A((t1, . . . , tλ))

f0g′

α ∗Γ
is semisimple. Since S ⊂ Uλ, this is the required homogeneous deformation of the crossed product A f0

α ∗ Γ .
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[2] E. Aljadeff, Y. Ginosar, Á. del Rı́o, Semisimple strongly graded rings, J. Algebra 256 (2002) 111–125.
[3] E. Aljadeff, D.J. Robinson, Semisimple algebras, Galois actions and group cohomology, J. Pure Appl. Algebra 94 (1994) 1–15.
[4] E. Aljadeff, D.J. Robinson, Solution of the twisting problem for skew group algebras, Israel J. Math. 91 (1995) 409–417.
[5] K.S. Brown, Cohomology of Groups, Springer-Verlag, Berlin, 1982.
[6] L.G. Chouinard, Projectivity and relative projectivity over group rings, J. Pure Appl. Algebra 7 (3) (1976) 287–302.
[7] A.M. Cegarra, A.R. Garzón, Obstructions to Clifford system extensions of algebras, Proc. Indian Acad. Sci. Math. Sci. 111 (2) (2001)

151–161.
[8] J. Cornick, P.H. Kropholler, Homological finiteness conditions for modules over strongly group-graded rings, Math. Proc. Cambridge Philos.

Soc. 120 (1) (1996) 43–54.
[9] M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964) 59–103.
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