Math 2924, Problem Set

November 19

1. Find the Maclaurin series expansion for $f(x)=\frac{x^{3}}{1+x^{2}}$ and determine its radius of convergence. (Suggestion: rather than starting to work out derivatives of $f(x)$ try relating the function to a geometric series.)
2. Find the Taylor series of $h(x)=1 / x$ centered at $a=3$ in two different ways.
3. Let $P(x)=x^{5}+9 x^{4}+33 x^{3}+61 x^{2}+57 x+21$. Find the Maclaurin series expansion for $P(x)$. What is its radius of convergence?
4. For the polynomial function $P(x)$ in the previous problem, determine the Taylor series expansion centered at $x=-2$. Use your answer to calculate the value of $P(-1.9)$ by hand.
5. Determine the limit L as x approaches 0 of $f(x)=\left(6 e^{x}-6-6 x-3 x^{2}-x^{3}\right) / x^{4}$ by first finding the Maclaurin series expansion of the numerator of $f(x)$.
6. Give the Taylor series expansions with indicated center a :
(a) $f(x)=x^{2} e^{-3 x}, \quad a=0$
(b) $f(x)=\int \frac{\sin x}{x} d x, \quad a=0$
(c) $f(x)=e^{x}, \quad a=2$
7. What are Maclaurin series for $1 /\left(1+x^{2}\right), \arctan (x), \arctan (-x)$ and $\arctan \left(2 x^{2}\right)$?

Comment: There are a handful of functions whose Maclaurin series you should remember. The inverse tangent function is one.
8. The hyperbolic cosine function $\cosh (x)$ is an even function. How can you see that by looking at its Maclaurin series? Can you see that $\sinh (x)$ is an odd function from its Maclaurin series?
9. Find a few of the first terms of the Maclaurin series for $\tan (x)$. Can you see why finding a pattern for the general term of this series might be impossible?

