2924 Problem Review Session September 10, 2019

PROBLEM 1. Use logarithmic differentiation to find dy/dx where $y = x^2 e^{\sin(x)}$. Compare your answer to what you would get using the product rule.

PROBLEM 2. Do the graphs of the exponential function $f(x) = e^x$ and the logarithm function g(x) = $\ln(x)$ have any common tangents?

(a) Make a sketch of the two curves and use it to guess how many lines will be tangent to both curves.

(b) Find the slope/intercept equations for any lines which are tangent to both curves.

- (a) $\lim_{x\to\infty} x^2 \ln(x)$
- (b) $\lim_{x\to e} x^2 \ln(x)$
- (c) $\lim_{x \to 0^+} x^2 \ln(x)$
- (d) $\lim_{x \to 0^{-}} x^2 \ln(x)$
- (e) $\lim_{x \to 0} \frac{\sin(x) \tan(x)}{x^3}$ (f) $\lim_{x \to 0} \frac{1}{\sin(x)} \frac{1}{x}$

- (g) $\lim_{x\to\infty} x^{(1/x)}$

PROBLEM 4. Use a calculus analysis to sketch the graph of $f(x) = x^2 \ln(x)$. (Compare with parts (a-d) of the previous problem.)

PROBLEM 5. Let $G(x) = \arctan(\tan(x))$.

- (a) Complete the description: "For a real number t, $\arctan(t)$ equals the angle"
- (b) Determine the values G(0), $G(\pi/4)$, $G(\pi)$, $G(3\pi/4)$, $G(-3\pi/4)$.

(c) Find the limits $\lim_{x\to\pi/2^-} G(x)$ and $\lim_{x\to\pi/2^+}$.

- (d) Explain that G(x) is an odd function and also a periodic function. (Write equations for both.)
- (e) What is the domain of this function?
- (f) Sketch the graph of G(x).