Math 2924-Calculus II
 some Exam 1 Review Problems

Problem 1. (15 points) Use a right triangle analysis to find
(a) $\tan \left(\cos ^{-1}(\sqrt{7} / 4)\right)$
(b) $\sec \left(\cos ^{-1}(\sqrt{7} / 4)\right)$

Problem 2. (15 points) Let $f(x)=\frac{3 x+2}{x-7}$. Find a formula for $f^{-1}(x)$. Briefly explain how you know f is a one-to-one function.

Problem 3. (25 points) Consider the function $f(x)=2 \ln (x)+1 / x$.
(a) Describe the domain of this function and determine its first two derivatives.
(b) Determine the intervals of increase/decrease for $f(x)$, and indicate local extremes.
(c) Determine the intervals of concavity for $f(x)$, and indicate points of inflection.
(d) Identify the range of f and all x - and y-intercepts.
(e) Use (a)-(d) to sketch a graph of $y=f(x)$. (NOTE: it may be helpful to know that $\lim _{x \rightarrow 0+} f(x)=$ ∞.)

Problem 4. (15 points) Differentiate (and simplify):
(a) $F(x)=\arctan \left(x^{4}\right)$,
(b) $G(x)=\ln (\sec (x)+\tan (x))$
(c) $H(x)=x^{x^{2}}$

Problem 5. (15 points) Suppose that $h(t)=C e^{k t}$ for some constants C and k and that $h(10)=100$ and $h^{\prime}(10)=100$. (a) Give a precise formula for $h(t)$. (b) If $h\left(t_{1}\right)=1000$ what does t_{1} equal?

Problem 6. (15 points) One of the two integrals

$$
\int \frac{e^{x}+\sin (x)}{e^{x}+\cos (x)} d x \quad \text { and } \quad \int \frac{e^{x}+\cos (x)}{e^{x}+\sin (x)} d x
$$

is easy to compute and the other is very difficult. Identify the easier one and work it out.
Problem 7. (5 points)-bonus Let f be a one-to-one function whose graph contains the point $P=(5,2)$. If the tangent line to the graph of $y=f(x)$ at $(5,2)$ is $y=-2 x+12$ what is tangent line to the graph of f^{-1} at the point $(2,5)$ in slope/intercept form?

Problem 8. Verify that each of the following is correct:
a) $\int_{1 / \sqrt{2}}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=\pi / 4$
b) $\int \frac{\sin (\arctan (x))}{1+x^{2}} d x=\frac{-1}{\sqrt{1+x^{2}}}+C$

Problem 9. Let $f(x)=\ln \left(2 x^{3}-1\right)$.
a) Determine the domain of f.
b) Explain why f is a one-to-one function.
c) Find a formula for the inverse function $f^{-1}(x)$.

Problem 10. Sketch the graph of the function $f(x)=x^{3} e^{-x}$. First determine the intervals of increasing/decreasing and the intervals of concavity for f, and clearly indicate any local extremes, points of inflection and asymptotes. (It may help to know that $\lim _{x \rightarrow \infty} f(x)=0$.)

Problem 11. Find the value of C for which the area of the region in the first quadrant under $y=e^{x}$ between $x=C$ and $x=C+1$ is e^{100}. Is $\log _{10}(C)$ bigger than 2 or smaller than 2 ?

Problem 12. (a) What are the domain and range of the function $f(x)=\tan ^{-1}(x)$? Sketch the graph of this function.
(b) What is the domain of $g(x)=\ln \left(\tan ^{-1}(x)\right)$?

Problem 13. (a) What is the domain and range of the function $f(x)=\sin ^{-1}(x)$? Sketch the graph of this function.
(b) What is the domain of $g(x)=\ln \left(\sin ^{-1}(x)\right)$?

Problem 14. If $f(x)=\frac{4 x-1}{2 x+3}$ find a formula for the inverse function $f^{-1}(x)$.
Problem 15. Consider the function $f(x)=\ln \ln \ln \ln (x) \quad$ (that is $f(x)=\ln (\ln (\ln (\ln (x))))$.
a) Is $f(x)$ defined for $x=e$? Determine the domain of f.
b) Show that f is a strictly increasing function.
c) Find a formula for the inverse function $f^{-1}(x)$ (note that f has an inverse since it is one-to-one by (b).)

Problem 16. Work the integrals:
(a) $\int \sec ^{2}(x) e^{\tan (x)} d x$
(b) $\int \frac{y}{y^{2}+1} d y$
(c) $\int_{1 / 2}^{1} \frac{1}{\sqrt{1-x^{2}}} d x$
(d) $\int_{1}^{e} \frac{1}{x\left(1+(\ln (x))^{2}\right)} d t$

Problem 17. (15 points) Use a right triangle analysis to simplify each of:
(a) $\sin \left(\tan ^{-1}(2 / 3)\right)$
(b) $\cos \left(\tan ^{-1}(2 / 3)\right)$

Problem 18. Sketch the graphs of $y=e^{x}$ and $y=\ln (x)$ in the same picture.
Problem 19. Determine the intervals of monotonicity for the function $f(x)=\ln \left(x^{2}-2 x+2\right)$ and identify any local maximums or minimums for f. (Hint: The domain of f consists of all real numbers.)

PROBLEM 20. If $f(x)=\frac{3-x}{5+2 x}$ then find a formula for the inverse function $f^{-1}(x)$. Is $f(x)$ a one-to-one function?

Problem 21. Compute each of the following integrals:
(a) $\int e^{3 x+1} d x$
(b) $\int \frac{1}{\sqrt{1-x^{2}}} d x$
(c) $\int_{1 / e}^{e^{2}} \frac{1}{x} d x$
(d) $\int \frac{\sqrt{\ln (x)}}{x} d x$
(e) $\int \frac{1}{1+25 x^{2}} d x$

Problem 22. Find the area of the region bounded by the hyperbola $y=3 /(x-2)$ and the three lines $y=0, x=-1$ and $\mathrm{x}=-4$. Sketch the region.

Problem 23. Compute each of the following and write your answer in simplest form.
(a) $\int_{1 / \sqrt{e}}^{e^{3}} \frac{1}{x} d x$
(b) $\int e^{3 x-2} d x$
(c) $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x$
(d) $\int \frac{(1+\ln (x))^{10}}{x} d x$

Problem 24. Differentiate each of the following functions of x and write your answer in simplest form.
(a) $f_{1}(x)=e^{3 x-2}$
(b) $f_{2}(x)=5^{3 x-2}$
(c) $f_{3}(x)=2 \ln \left(x^{2}+1\right)-2 x \arctan (x)+1$

Problem 25. Suppose that $f(x)=C e^{-5 x}$ for some constant C and that $f(0)=320$. Find the value of x for which $f(x)=10$. Write your answer in simplest form.

Problem 26. Let $f(x)=-3 x+2$. (a) Find a formula for the inverse function $f^{-1}(x)$.
(b) In the same picture, sketch the graphs of $y=f(x)$ and $y=f^{-1}(x)$. Clearly identify the coordinates of any points of intersection.

Problem 27. Let $f(x)=(\ln (x))^{2}$.
(a) Describe the domain of f.
(b) Determine the first two derivatives of $f(x)$.
(c) Find the intervals on which f is increasing and decreasing and identify any local extremes.
(d) Find the intervals on which f is concave up and concave down.
(e) Give a rough sketch of the graph of $y=f(x)$ using the information in (a)-(d).

