Math 2924–Calculus II some Exam 1 Review Problems

PROBLEM 1. (15 points) Use a right triangle analysis to find (a) $\tan\left(\cos^{-1}(\sqrt{7}/4)\right)$ (b) $\sec\left(\cos^{-1}(\sqrt{7}/4)\right)$

PROBLEM 2. (15 points) Let $f(x) = \frac{3x+2}{x-7}$. Find a formula for $f^{-1}(x)$. Briefly explain how you know f is a one-to-one function.

PROBLEM 3. (25 points) Consider the function $f(x) = 2\ln(x) + 1/x$.

(a) Describe the domain of this function and determine its first two derivatives.

(b) Determine the intervals of increase/decrease for f(x), and indicate local extremes.

(c) Determine the intervals of concavity for f(x), and indicate points of inflection.

(d) Identify the range of f and all x- and y-intercepts.

(e) Use (a)–(d) to sketch a graph of y = f(x). (NOTE: it may be helpful to know that $\lim_{x\to 0+} f(x) = \infty$.)

PROBLEM 4. (15 points) Differentiate (and simplify): (a) $F(x) = \arctan(x^4)$, (b) $G(x) = \ln(\sec(x) + \tan(x))$ (c) $H(x) = x^{x^2}$

PROBLEM 5. (15 points) Suppose that $h(t) = Ce^{kt}$ for some constants C and k and that h(10) = 100and h'(10) = 100. (a) Give a precise formula for h(t). (b) If $h(t_1) = 1000$ what does t_1 equal?

PROBLEM 6. (15 points) One of the two integrals

$$\int \frac{e^x + \sin(x)}{e^x + \cos(x)} \, dx \qquad \text{and} \qquad \int \frac{e^x + \cos(x)}{e^x + \sin(x)} \, dx$$

is easy to compute and the other is very difficult. Identify the easier one and work it out.

PROBLEM 7. (5 points)-bonus Let f be a one-to-one function whose graph contains the point P = (5, 2). If the tangent line to the graph of y = f(x) at (5, 2) is y = -2x + 12 what is tangent line to the graph of f^{-1} at the point (2, 5) in slope/intercept form?

PROBLEM 8. Verify that each of the following is correct:

a)
$$\int_{1/\sqrt{2}}^{1} \frac{1}{\sqrt{1-x^2}} dx = \pi/4$$

b) $\int \frac{\sin(\arctan(x))}{1+x^2} dx = \frac{-1}{\sqrt{1+x^2}} + C$

PROBLEM 9. Let $f(x) = \ln(2x^3 - 1)$.

a) Determine the domain of f.

b) Explain why f is a one-to-one function.

c) Find a formula for the inverse function $f^{-1}(x)$.

PROBLEM 10. Sketch the graph of the function $f(x) = x^3 e^{-x}$. First determine the intervals of increasing/decreasing and the intervals of concavity for f, and clearly indicate any local extremes, points of inflection and asymptotes. (It may help to know that $\lim_{x\to\infty} f(x) = 0$.)

PROBLEM 11. Find the value of C for which the area of the region in the first quadrant under $y = e^x$ between x = C and x = C + 1 is e^{100} . Is $\log_{10}(C)$ bigger than 2 or smaller than 2?

PROBLEM 12. (a) What are the domain and range of the function $f(x) = \tan^{-1}(x)$? Sketch the graph of this function.

(b) What is the domain of $g(x) = \ln(\tan^{-1}(x))$?

PROBLEM 13. (a) What is the domain and range of the function $f(x) = \sin^{-1}(x)$? Sketch the graph of this function.

(b) What is the domain of $g(x) = \ln(\sin^{-1}(x))$?

PROBLEM 14. If $f(x) = \frac{4x-1}{2x+3}$ find a formula for the inverse function $f^{-1}(x)$.

PROBLEM 15. Consider the function $f(x) = \ln \ln \ln \ln \ln(x)$ (that is $f(x) = \ln(\ln(\ln(x)))$). a) Is f(x) defined for x = e? Determine the domain of f.

b) Show that f is a strictly increasing function.

c) Find a formula for the inverse function $f^{-1}(x)$ (note that f has an inverse since it is one-to-one by (b).)

PROBLEM 16. Work the integrals:

(a)
$$\int \sec^2(x)e^{\tan(x)} dx$$

(b) $\int \frac{y}{y^2 + 1} dy$
(c) $\int_{1/2}^1 \frac{1}{\sqrt{1 - x^2}} dx$
(d) $\int_1^e \frac{1}{x(1 + (\ln(x))^2)} dt$

PROBLEM 17. (15 points) Use a right triangle analysis to simplify each of: (a) $\sin(\tan^{-1}(2/3))$ (b) $\cos(\tan^{-1}(2/3))$

PROBLEM 18. Sketch the graphs of $y = e^x$ and $y = \ln(x)$ in the same picture.

PROBLEM 19. Determine the intervals of monotonicity for the function $f(x) = \ln(x^2 - 2x + 2)$ and identify any local maximums or minimums for f. (Hint: The domain of f consists of all real numbers.)

PROBLEM 20. If $f(x) = \frac{3-x}{5+2x}$ then find a formula for the inverse function $f^{-1}(x)$. Is f(x) a one-to-one function?

PROBLEM 21. Compute each of the following integrals: (a) $\int e^{3x+1} dx$

(a)
$$\int e^{-x^2} dx$$

(b) $\int \frac{1}{\sqrt{1-x^2}} dx$
(c) $\int_{1/e}^{e^2} \frac{1}{x} dx$
(d) $\int \frac{\sqrt{\ln(x)}}{x} dx$
(e) $\int \frac{1}{1+25x^2} dx$

PROBLEM 22. Find the area of the region bounded by the hyperbola y = 3/(x-2) and the three lines y = 0, x = -1 and x = -4. Sketch the region.

PROBLEM 23. Compute each of the following and write your answer in simplest form.

(a)
$$\int_{1/\sqrt{e}}^{e^3} \frac{1}{x} dx$$

(b)
$$\int e^{3x-2} dx$$

(c)
$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$$

(d) $\int \frac{(1+\ln(x))^{10}}{x} dx$

PROBLEM 24. Differentiate each of the following functions of x and write your answer in simplest form. (a) $f_1(x) = e^{3x-2}$

(b)
$$f_2(x) = 5^{3x-1}$$

(c) $f_3(x) = 2\ln(x^2 + 1) - 2x\arctan(x) + 1$

PROBLEM 25. Suppose that $f(x) = Ce^{-5x}$ for some constant C and that f(0) = 320. Find the value of x for which f(x) = 10. Write your answer in simplest form.

PROBLEM 26. Let f(x) = -3x + 2. (a) Find a formula for the inverse function $f^{-1}(x)$. (b) In the same picture, sketch the graphs of y = f(x) and $y = f^{-1}(x)$. Clearly identify the coordinates of any points of intersection.

PROBLEM 27. Let $f(x) = (\ln(x))^2$.

- (a) Describe the domain of f.
- (b) Determine the first two derivatives of f(x).
- (c) Find the intervals on which f is increasing and decreasing and identify any local extremes.
- (d) Find the intervals on which f is concave up and concave down.
- (e) Give a rough sketch of the graph of y = f(x) using the information in (a)-(d).