Exam 2 - Some Review Problems

Math 2924

1. Let $f(x)$ be the rational function $f(x)=\frac{2 x}{(x-1)^{2}(x+2)}$.
(a) Determine the partial fractions decomposition for $f(x)$.
(b) Use your answer to (a) to calculate $\int f(x) d x$.
(c) Check your answer in part (b).

Answer:
(a) The partial fractions decomposition is $f(x)=\frac{4 / 9}{x-1}+\frac{2 / 3}{(x-1)^{2}}+\frac{-4 / 9}{x+2}$.
(b) $\int f(x) d x=\frac{4}{9} \ln |x-1|-\frac{2}{3} \frac{1}{x-1}-\frac{4}{9} \ln |x+2|+C$
(c) Check by differentiating: if the answer in (b) is correct then its derivative will equal $\frac{2 x}{(x-1)^{2}(x+2)}$.
2. Determine the limits:
(a) $\lim _{x \rightarrow 0} \frac{\tan ^{2}(x)}{x}$
(b) $\lim _{x \rightarrow 0+} \ln (x) \sin (x)$
(c) $\lim _{x \rightarrow(\pi / 2)+} \tan (x)^{\cos (x)}$
(d) $\lim _{x \rightarrow \infty}(1+3 / x)^{5 x}$
3. If $x=4 \sec (\theta)$ express $\sin (\theta)$ and $\tan (\theta)$ in terms of x by using a right triangle analysis.

Answer:
$\sin (\theta)=\frac{\sqrt{x^{2}-16}}{x}$ and $\tan (\theta)=\frac{\sqrt{x^{2}-16}}{4}$
4. State the half angle formulas for the cosine function and for the sine function.
5. Determine the limits: (a) $\lim _{x \rightarrow 0} \frac{\ln (x+1)}{\tan (3 x)} \quad$ (b) $\lim _{x \rightarrow 0}(x+1)^{1 / \tan (3 x)}$
6. Use integration by parts taking $u=\ln (x)$ to work out the integral $\int x^{p} \ln (x) d x$ where $p>0$.
7. Show that the integral $\int_{0}^{\infty} x e^{1-x^{2}} d x$ converges and determine its value.
8. Consider the integral $\int \frac{x^{3}}{\sqrt{9-x^{2}}} d x$.
(a) Calculate the integral using a trig substitution.
(b) Calculate the integral using a u-substitution.
(c) Show that your answers in (a) and (b) agree.
9. (a) Determine the partial fraction decomposition of the rational function

$$
R(x)=\frac{4 x^{2}+x+4}{(x-1)\left(x^{2}+x+1\right)}
$$

(b) Use (a) to determine $\int R(x) d x$.
10. For which real numbers k is the rational function $\frac{x+1}{\left(2 x^{2}+k x+5\right)^{3}}$ a partial fraction? Explain.
11. The rational function $Q(x)$ given below can be written as the sum of a polynomial $P(x)$ and partial fractions. What does $P(x)$ equal?

$$
Q(x)=\frac{5 x^{5}-12 x^{4}+5 x^{3}+5 x^{2}-7 x+2}{x^{4}-2 x^{3}+x-1}
$$

12. Would the form " ∞^{0} " be considered to be determinate or indeterminate? Write a sentence or two justifying your answer.
13. Work the following integrals. (Be sure to clearly identify the method of approach.)
(a) $\int x \sec ^{2}(x) d x$
(b) $\int \frac{2}{x^{2}+4 x+5} d x$
(c) $\int \sin ^{2}(t) \cos ^{2}(t) d t$
(d) $\int \frac{1}{\left(\sqrt{49-x^{2}}\right)^{3}} d x$
(e) $\int \frac{1}{\left(\sqrt{x^{2}-49}\right)^{3}} d x$

Answer:
(a) $\int x \sec ^{2}(x) d x=x \tan (x)+\ln |\cos (x)|+C$ using integration by parts $\left(u=x, d v=\sec ^{2}(x) d x\right)$.
(b) $\int \frac{2}{x^{2}+4 x+5} d x=2 \tan ^{-1}(x+2)+C$ by completing the square $x^{2}+4 x+5=(x+2)^{2}+1$ and substituting $u=x+2, d u=d x$.
(c) $\int \sin ^{2}(t) \cos ^{2}(t) d t=\frac{t}{8}-\frac{\sin (4 t)}{32}+C$ using the half-angle identities $\sin ^{2}(\theta)=\frac{1}{2}(1-\cos (2 \theta))$ and $\cos ^{2}(\theta)=$ $\frac{1}{2}(1+\cos (2 \theta))$.
(d) $\int \frac{1}{\left(\sqrt{49-x^{2}}\right)^{3}} d x=\frac{x}{49 \sqrt{49-x^{2}}}+C$ using the trig substitution $x=7 \sin (\theta), d x=7 \cos (\theta) d \theta$.
(e) $\int \frac{1}{\left(\sqrt{x^{2}-49}\right)^{3}} d x=-\frac{x}{49 \sqrt{x^{2}-49}}+C$ using the trig substitution $x=7 \sec (\theta), d x=7 \sec (\theta) \tan (\theta) d \theta$.
14. Let C be the curve segment which is the graph of $y=\frac{2}{3}\left(x^{2}+1\right)^{3 / 2}$ for $0 \leq x \leq 2$. Describe the arclength of C as a definite integral and compute its value.
$\sqrt{\text { Answer: }} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sqrt{4 x^{4}+4 x^{2}+1}=2 x^{2}+1$ and $L(C)=\int_{0}^{2} 2 x^{2}+1 d x=22 / 3$.
15. Determine the integral $\int \cos \left(\ln \left(x^{2}\right)\right) d x$.

Answer:

Using integration by parts twice gives $\int \cos \left(\ln \left(x^{2}\right)\right) d x=\frac{1}{5} x \cos \left(\ln \left(x^{2}\right)\right)+\frac{2}{5} x \sin \left(\ln \left(x^{2}\right)\right)+C$
16. The integral $\int \ln (2 x) d x$ can be worked out using integration by parts taking $d v=d x$. Carry this out.
17. Give the general form of the partial fractions decomposition of the rational function $\frac{x^{4}-1}{x(2 x+1)^{3}\left(x^{2}+x+1\right)^{2}}$.
18. Determine the precise partial fractions decomposition for $f(x)=\frac{x+1}{(x-1)\left(x^{2}+1\right)}$ and then determine $\int f(x) d x$.
19. Work the indefinite integrals:
(a) $\int \tan \left(e^{x}\right) e^{x} d x$
(b) $\int \frac{x^{3}}{x^{2}-2 x+1} d x$
(c) $\int \sin ^{4}(x) \cos ^{3}(x) d x$
(d) $\frac{1+2 x^{3}}{x^{2} \sqrt{x^{2}-1}} d x$
20. Let \mathcal{R} be the region below $y=e^{-2 x}$ and inside the first quadrant.
(a) Express the area of \mathcal{R} as an improper integral and a limit of definite integrals, then compute it.
(b) Determine the volume of the solid obtained by rotating \mathcal{R} around the x-axis.
21. Determine the indefinite integral $\int \ln \left(x^{2}+1\right) d x$.
22. Give the general form of the partial fractions decomposition for the following rational functions.
(a) $\frac{x^{4}-3 x+1}{(x-3)^{3}\left(x^{2}-x+6\right)^{2}}$
(b) $\frac{x^{4}-3 x+1}{(x-3)^{3}\left(x^{2}-x-6\right)^{2}}$
23. If $\sec (\theta)=x / 5$ use a right triangle analysis to express the following as functions of x :
(a) $\sin (\theta)$
(b) $\cos (\theta)$
(c) $\sin (2 \theta)$
(d) $\tan (2 \theta)$
24. Determine the limit $\lim _{x \rightarrow 0} \frac{e^{3 x}-1-3 x-9 x^{2} / 2}{x^{3}}$. (Write and explain your steps carefully!)
25. Find the arclength of the curve $y=2 x^{3 / 2}$, with $0 \leq x \leq b$. What value should you choose for b so that the arclength is equal to 2 ?
26. Let $F(x)=x^{1 / x}$ for $x>0$.
(a) Does the graph of $y=F(x)$ have a horizontal asymptote as x goes to ∞ ? If so what is it?
(b) Does the graph of $y=F(x)$ have a right-side vertical asymptote at $x=0$?
(c) Does $F(x)$ have any local extremes?

