
Noname manuscript No.
(will be inserted by the editor)

Trajectory optimization using quantum computing

Alok Shukla · Prakash Vedula

Received: date / Accepted: date

Abstract We present a framework wherein the trajectory optimization problem (or a problem involv-

ing calculus of variations) is formulated as a search problem in a discrete space. A distinctive feature of

our work is the treatment of discretization of the optimization problem wherein we discretize not only

independent variables (such as time) but also dependent variables. Our discretization scheme enables

a reduction in computational cost through selection of coarse-grained states. It further facilitates the

solution of the trajectory optimization problem via classical discrete search algorithms including de-

terministic and stochastic methods for obtaining a global optimum. This framework also allows us to

efficiently use quantum computational algorithms for global trajectory optimization. We demonstrate

that the discrete search problem can be solved by a variety of techniques including a deterministic

exhaustive search in the physical space or the coefficient space, a randomized search algorithm, a quan-

tum search algorithm or by employing a combination of randomized and quantum search algorithms

depending on the nature of the problem. We illustrate our methods by solving some canonical problems

in trajectory optimization. We also present a comparative study of the performances of different meth-

ods in solving our example problems. Finally, we make a case for using quantum search algorithms as

they offer a quadratic speed-up in comparison to the traditional non-quantum algorithms.

Keywords Trajectory optimization · calculus of variations · global optimization · quantum computa-

tion · randomized search algorithm · Brachistochrone problem

Mathematics Subject Classification (2000) MSC 49M25 · 81P68

1 Introduction

The goal of trajectory optimization is to find a path or trajectory that optimizes a given quantity of

interest or any other objective function associated with a certain performance measure, under a set of

given constraints on the dynamics of the system. Trajectory optimization problems appear naturally in

many practical situations, especially in aerospace applications. Trajectory optimization problems are

important, even at a more fundamental level, as they can be related to the principle of least action or

other variational principles underlying diverse physical phenomena (see [12], [14], [13], [10]). Mathe-

matically, action is a functional with the trajectory function of the system as its argument. Minimizing

Alok Shukla
The University of Oklahoma, Norman, USA
E-mail: alok.shukla@ou.edu

Prakash Vedula
The University of Oklahoma, Norman, USA
E-mail: pvedula@ou.edu



2 Alok Shukla, Prakash Vedula

the action functional means selecting the optimum trajectory that minimizes the underlying integral

associated to the action. Of course, in this sense, trajectory optimization is related to the subject of the

calculus of variations. Therefore, the techniques proposed in this paper are also applicable to problems

involving the calculus of variations.

There are many known methods of trajectory optimization (see [2], [8], [11], [23]). These solution

methods can be broadly classified into the categories of indirect methods and direct methods. In

an indirect method one proceeds by analytically finding a set of necessary and sufficient conditions

to solve a given trajectory optimization problem. Indirect methods have a long history dating back to

the celebrated brachistochrone problem, posed by Bernoulli in the 16th century ([1], [24]), and which

was subsequently solved by Euler, Lagrange and others by employing the techniques of calculus of

variations. On the other hand direct methods have become more popular with the advent of digital

computers. A direct method consists of discretizing the optimization problem and then solving the

resulting non-linear optimization problem directly. Typically, in a direct method the control and the

state parameters are represented by piecewise polynomial functions or a linear combination of global

basis functions satisfying the boundary constraint on a discrete time grid. Several types of polynomials

have been employed to represent the control and state parameters in the literature. For example in [11],

Chebyshev polynomials are used to solve the optimization problem.

We remark that indirect methods often involve prior mathematical analysis of the problem. The re-

sulting analytical solution is typically quite complicated and not often amenable to a computationally

efficient solution. Therefore, in practical applications direct methods are often more suitable. However,

in high dimensional problems direct methods also become computationally expensive. In this paper we

describe a novel discretization scheme to solve the global optimization problem wherein we discretize

both the independent variables (such as time) and the dependent variables. Our discretization scheme

involves the selection of a finite number of coarse-grained states. Each of these states has an associated

cost function. The problem then becomes a discrete search problem, in which a state with the minimum

associated cost is to be determined. Then it becomes possible to employ deterministic and probabilistic

methods for obtaining a global optimum. In this work, we propose a new framework for solution of the

trajectory optimization problem via classical discrete search algorithms including an exhaustive search

algorithm (Method I, Sect. 4.1), a random search algorithm (Method II, Sect. 4.2), and a hybrid search

algorithm (Method III, Sect. 4.3). This framework also allows us to efficiently use quantum computa-

tional algorithms for global trajectory optimization. In this context, we propose new approaches for so-

lution of the trajectory optimization problem using quantum exhaustive search algorithms (Method IV,

Sect. 5.2), a quantum random search algorithm (Method V, Sect. 5.3), and a quantum hybrid algorithm

(Method VI, Sect. 5.4). It turns out that quantum computers, in principle, are significantly superior to

classical computers in solving the underlying discrete search problems. In fact, a slight modification of

Grover’s quantum search algorithm (see [15]) leads to a solution with complexity of the order ofO(
√
N ),

where N depends on the number of possible states of control and state parameters. The number N is

more precisely defined in Sect. 3.

A main focus of this paper is to show that trajectory optimization problems can be tackled efficiently

using quantum computational algorithms employed either alone or in conjunction with a randomized

search. As noted earlier, to achieve this we use a discretization scheme which makes the use of quan-

tum computing possible. We also note here that unlike many other works in the literature on trajectory

optimization which are set up to only detect the local optimum, our approach enables the search of

the global optimum. We will demonstrate our method using two canonical problems in trajectory opti-

mization, namely the brachistochrone problem and the moon landing problem. The method presented

here could be made even more effective if it is combined with other techniques like the gradient descent
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and simulated annealing (see [22]). However, those aspects are outside the scope of the present work

and will be considered in a future work.

In Sect. 2, we present the problem formulation and in the following section, Sect. 3, we describe

our discretization scheme. In Sect. 4 we describe classical search algorithms including the exhaustive,

random and hybrid search algorithms to solve the discrete version of the trajectory optimization prob-

lem formulated in Sect. 3. Sect. 5 contains a brief introduction to quantum search methods, including

Grover’s algorithm. We also describe various quantum search algorithms in this section and discuss

advantages of these algorithms over their classical counterparts. Sect. 6 contains three computational

examples, namely, the brachistochrone problem, the isoperimetric problem and the moon landing prob-

lem. In this section, we give several approaches to discretization and searching such as discretization

in the physical space or the co-efficient space, followed by an exhaustive search, a random search, a

quantum search or a hybrid search. We also discuss and compare the performances of these approaches

in solving the brachistochrone problem. Finally, we present our concluding remarks in Sect. 7.

2 Trajectory optimization: Problem formulation

We will closely follow [11] in the formulation of the trajectory optimization problem in this paper.

Suppose U(t) ∈ R
m and X(t) ∈ R

n denote the control function and the corresponding state trajectory

respectively at time t. The goal is to determine the optimal control function U(t) and the corresponding

state trajectory X(t) for τ0 ≤ t ≤ τf such that the following Bolza cost function is minimized:

J (U(.),X(.), τf ) =M(X(τf ), τf ) +
∫ τf

τ0

L(U(τ),X(t), t)dt. (2.1)

HereM and L are R-valued functions. Moreover, we also assume that the system satisfies the following

dynamic constraints.

fl ≤ f (U(τ),X(t),X
′
(t), t) ≤ fu t ∈ [τ0, τf ]. (2.2)

In addition, we also specify the following boundary conditions

hl ≤ h(X(τ0),X(τf ), τf − τ0) ≤ hu , (2.3)

where h an R
p-valued function and hl ,hu ∈ R

p are constant vectors providing the lower and upper

bounds of h. Finally, we note the mixed constraints on control and state variables

gl ≤ g(U(t),X(t), t) ≤ gu , (2.4)

with g a R
r-valued function and gl , gu ∈Rr are constant vectors providing the lower and upper bounds

of g.

We note that with an appropriate transformation we may assume that τ0 = −1 and τf = 1 (see [11]).

3 Discretization approaches

There are a number of local and global discretization methods available for the problem described in the

previous section. Often the trajectory is approximated using a linear combination of a set of orthogo-

nal polynomials. For example, one can use global spectral methods employing Chebyshev polynomials.

Another possibility is to use piecewise quadratic or cubic splines to approximate the trajectory within

a set of chosen discrete grid points. An appropriate choice of discretization method also depends upon
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the nature of the problem. For example, the Chebyshev pseudospectral method has the advantage that

the node points cluster around the end points of the interval avoiding the Runge phenomenon. In this

paper we present a piecewise formulation which has some advantages over global polynomial approx-

imations. Usually, one finds in the literature that the discretization is carried out in the independent

variable such as time (or space). In addition to discretizing the independent variable, in this paper we

propose to discretize the dependent variable as well. In other words, discretization will mean map-

ping a set of continuous dependent (and independent) variables to a set of discrete dependent (and

independent) variables. Next we describe our discretization scheme in detail.

We divide the time interval [τ0, τf ] into η sub-intervals [tj , tj+1] for j = 0,1 · · ·η −1 with τ0 = t0 < t1 <

t2 < · · · < tη−1 < tη = τf . We define

X(t) =
η−1∑
j=0

χj (t) (3.1)

with

χj (t) =



mj∑
k=0

aj,kφj,k(t) if t ∈ [tj , tj+1),

0 otherwise.

(3.2)

Here aj,k ∈ R
n are constant vectors and φj,k is a chosen spectral polynomial for approximating the

trajectory within t ∈ [tj , tj+1]. For example, for a quadratic approximation we may assume mj = 2 and

φj,k = tk . Further, depending upon the nature of the problem, the following conditions may be needed

to avoid any possible discontinuities

lim
t→tj+1

χj (t) = χj+1(tj+1) for j = 0,1,2 . . .η − 1. (3.3)

Moreover, if needed, smoothness conditions involving higher-order derivatives may also be imposed.

We make a similar definition for U as,

U(t) =
η−1∑
j=0

µj (t) (3.4)

with

µj (t) =



nj∑
k=0

bj,kψj,k(t) if t ∈ [tj , tj+1),

0 otherwise.

(3.5)

Here bj,k ∈ R
m are constant vectors and ψj,k is a chosen spectral polynomial for approximating the

control function within t ∈ [tj , tj+1]. Further, we impose the following boundary conditions similar to

Eq. (3.3)

lim
t→tj+1

µj (t) = µj+1(tj+1) for j = 0,1,2 . . .η − 1. (3.6)

We note that the above formulation is more general than the one given in [11] as on setting mj = 0 and

suitably defining χ and µ we can recover the formulation given in [11].
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Now we further discretize our problem by imposing the condition that for 1 ≤ r ≤ n and for 0 ≤ k ≤
mj the components of vectors aj,k(r) take values from a discrete set of cardinality Sj,r,k , say aj,k(r) ∈ Sj,r,k
where Sj,r,k = {α1,α2, · · ·} with α1,α2, · · · ∈ R and #Sj,r,k = Sj,r,k . We note that the choices of αi , the

elements of the set Sj,r,k depend on the nature of the problem and can be appropriately modified. A

typical choice could be equidistant entries of the following form

Sj,r,k = {−nj,r,k ,−(nj,r,k − εj,r,k), . . . ,0, . . . ,nj,r,k − εj,r,k ,nj,r,k} ⊂R.

Similarly, for 1 ≤ r ≤ m and for 0 ≤ k ≤ nj we let the components of vectors bj,k(r) to take values only

from a discrete set of cardinality Tj,r,k , say bj,k(r) ∈ Tj,r,k , where Tj,r,k = {βi | βi ∈R} with #Tj,r,k = Tj,r,k .

We note that with this discretization the trajectory optimization problem is now turned into a dis-

crete search problem of size N = ST where

S =
η−1∏
j=0

n∏
r=1

mj∏
k=0

Sj,k,r (3.7)

and

T =
η−1∏
j=0

m∏
r=1

nj∏
k=0

Tj,k,r , (3.8)

and where the objective function to be minimized is the discrete form of Eq. (2.1). Once we take the

boundary conditions given by Eq. (3.3) and Eq. (3.6) into account, the problem size is further reduced.

For example, for j = 1 . . .η − 1 we can always choose aj,0 and bj,0 such that the boundary conditions

given by Eq. (3.3) and Eq. (3.6) are satisfied. In any case it is clear that there are only a finite number of

states, say N , in our search space.

In principle, we can now solve the problem by traversing our discrete search space and finding the

state that corresponds to the minimum cost and satisfies all the imposed constraints. Still, in practice,

the problem is the massive size of the discrete search space. We remark that even in the double pre-

cision 64-bit representation of a variable (a real number) on a digital computer, a total of 264 distinct

states of the variable can be faithfully represented on the machine. In an optimization problem involv-

ing hundreds of state variables, clearly the size of the discrete search space could become very large

and unmanageable. We propose to use a discretization scheme consisting of “coarse-grained” states,

thereby reducing the size of the discrete search space compared to the traditional “fine-grained” states

representation on a digital computer. The trade-off here is that reducing the size of the discrete search

space affects the quality of the solution. Therefore, it becomes desirable to obtain a delicate balance

between the size of the discrete search space and the quality/accuracy of the resulting solution. In most

applications, the size of the discrete search space would render a direct exhaustive search computa-

tionally very costly or even outright impossible. In such cases we look for alternate practical solutions.

One may use analytical techniques like the gradient method to appropriately direct the search. Another

possible approach is to use a random search method to find an approximate solution and then use an

exhaustive search near that approximate solution. Parallel computing may also be helpful in this con-

text. In this article, we propose to employ a quantum search algorithm which is faster and more efficient

in comparison to all the classical methods. We also discuss the possibility of using a hybrid algorithm

combining random search with the quantum search. But first we consider classical approaches to solve

global trajectory optimization problems.
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4 New framework for trajectory optimization via classical search algorithms

In this section, we consider the problem described in Sect. 3 of finding the minimum cost, with the cost

function being the discrete version of Eq. (2.1) and N = ST with S and T as in Eq. (3.7) and Eq. (3.8).

We will describe the application of classical algorithms, including deterministic and probabilistic ap-

proaches for solving this problem using our proposed framework of coarse-grained states. We remark

that the optimum given by these methods are global, unlike many instances in the trajectory optimiza-

tion literature wherein local optima are obtained.

4.1 Method I: Classical exhaustive search algorithm

We say that the search is exhaustive if each of theN states have been searched for the optimum cost. An

exhaustive search in the physical space is guaranteed to give an optimal global solution to any desired

degree of accuracy with appropriate grid refinement. In Sect. 6.1.1 we will present further details on

this method in the context of solving the brachistochrone problem.

4.2 Method II: Classical random search algorithm

In many trajectory optimization problems the discrete search space is so large that an exhaustive search

becomes computationally very costly. An alternative approach in such cases is to apply the well-known

“pure random search” method, wherein samples are randomly selected and the running minimum cost

is updated if needed (see [5], [19], [26]). In our context this algorithm is described below in Algo-

rithm 1. In Sect. 6.1.3, we will present a computational example employing this algorithm for solving

the brachistochrone problem.

Algorithm 1: A random search algorithm for trajectory optimization

/* Description: The objective of this random algorithm is find the minimum cost

for the problem described in Sect.3 with the cost function being the discrete

version of Eq. (2.1) and N = ST with S and T as in Eq. (3.7) and Eq. (3.8). */

1 function findMinCostRandom ({Y0,Y1,Y2 . . . ,YN−1},n);
Input : a list of size N containing all the possible states of the system and n the number of times

the search has to be performed.
Output: the index of an admissible state which has the minimum cost in n random trials, the

associated minimum cost.
2 Set x = a random state from the input list.
3 Set count = 1.
4 while count < n do
5 Set y = a random state from the input list.
6 Set count = count + 1.
7 if cost(y) < cost(x). then
8 Set x = y.
9 end

10 end
11 Return (x, cost(x)).

We note that this random search algorithm is guaranteed to succeed, with probability 1, as the

number of steps n approaches infinity. To make this more precise, suppose that all the states are

equally likely to yield the minimum cost. Let p(r,n) denote the probability of the random search al-
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a |0〉+ b |1〉 X b |0〉+ a |1〉

a |0〉+ b |1〉 H
a√
2

(|0〉+ |1〉) + b√
2

(|0〉 − |1〉)

Fig. 1: Quantum NOT and Hadamard gates

Oracle
O

Hadamard
transform
H⊗n

Phase shift
φ

Hadamard
transform
H⊗n

Fig. 2: The Grover operator G

gorithm picking the rth ranked minimum cost path in the list, in n random searches. Clearly p(r,n) =∑n−1
k=0( rN )(N−rN )k = 1− (1− r

N )n and lim
n→∞

p(r,n)→ 1.

4.3 Method III: Classical hybrid search algorithm

The hybrid search algorithm is a combination of the random and the exhaustive search algorithms and

in many situations it is the most efficient classical search method. In a hybrid search algorithm first a

random search is carried out to obtain an approximate solution. Then the result of the random search

is further improved by performing an exhaustive search in a finer discrete grid near the approximate

solution given by the random search. A computational example will be given in Sect. 6.1.4.

5 New framework for trajectory optimization via quantum search algorithms

Quantum computing is an exciting field which beautifully combines quantum physics with computer

science. There has been impressive progress in theoretical development of quantum algorithms as well

as in their practical implementation on quantum computers. We refer the readers to any standard book

on the subject for a more in-depth treatment (for eg., [18], [21] or [25] ).

5.1 Overview of quantum computation

A fundamental concept in quantum computation is that of the quantum bit, or ‘qubit’. Unlike the

classical bit, the qubit, say |q〉, can be in a superposition of the states |0〉 and |1〉, i.e., |q〉 = a |0〉 + b |1〉
with a,b ∈C. Hence, a qubit can be considered a vector in a two-dimensional complex vector space with

the set {|0〉 , |1〉} forming a basis. A quantum system can be transformed from one state to another by the

so called unitary transformations, which are reversible (see Fig. 1, for some examples). Once a classical

measurement is taken the state of the qubit |q〉 is changed from the superposition of the states |0〉 and

|1〉 to either 0 or 1, with respective probabilities of |a|2 and |b|2. This measurement step is a non-unitary

and non-reversible transformation.

5.1.1 Quantum search: Grover’s algorithm

We will briefly describe Grover’s quantum search algorithm [15] for the sake of clarity and continuity

of presentation in this work. Suppose that there is a list of N items, and we are required to search for

one or more marked items. Also assume that we have access to an oracle, who when presented with an

item from the list will answer if the item is marked or not. For example, the oracle can be assumed to

be a black box function such that for any item with index x in the list, i.e., with 0 ≤ x ≤ N − 1, we have

f (x) = 1 if x is a marked item, otherwise f (x) = 0. It is clear that with the classical computation total
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1√
N

0 1 N − 1k 0 1 N − 1

mean

k

1√
N

0 1 N − 1k

3√
N

Fig. 3: Amplitude amplification in one iteration of the application of Grover operator. Note that initially
all the states have the same amplitude, but at the end the amplitude of the marked item is amplified.

O(N ) calls to oracle will be required for the search problem. However, with the quantum computation

onlyO(
√
N ) oracle calls are needed to solve the search problem with probability 1. Furthermore, if there

are M solutions of the search problem (of size N ) then only O(
√
N/M) calls to the oracle is sufficient to

solve the search problem.

For simplicity, let us assume that N = 2n. Therefore, the discrete search space can be represented by

a n qubit system. The algorithm starts with the system in |0〉⊗n state, i.e., all the n qubits are initially in

the state |0〉. The action of the oracle O (see Eq. 6.3 in [18] ) on the input |x〉 can be represented by

O |x〉 = (−1)f (x) |x〉 . (5.1)

The action of the Hadamard transform H⊗n on the input |0〉⊗n is used to transform the input to a

uniform superimposed state, say |ψ〉, such that

|ψ〉 =H⊗n(|0〉⊗n) =
1
√
N

N−1∑
x=0

|x〉 . (5.2)

Next the algorithm proceeds with the repeated application of Grover operator G which is shown in the

Fig. 2. The third step in the Fig. 2 is the phase shift which is transforming all non-zero basis state |x〉
to −|x〉 with |0〉 remaining unchanged. It is easy to see that the phase shift φ is the unitary operator

(2 |0〉〈0| − I). It follows that the Grover operator G is essentially the unitary transformation

G =
(
H⊗n(2 |0〉〈0| − I)H⊗n

)
O = (2 |ψ〉〈ψ| − I)O. (5.3)

We note that at the heart of Grover’s algorithm lies the operator G. In fact, as noted earlier G consists of

(2 |ψ〉〈ψ| − I)O. The action of oracle amounts to changing the phase of the marked item. On the other

hand it can be checked that

(2 |ψ〉〈ψ| − I) (
N−1∑
k=0

αk |k〉) =
N−1∑
k=0

(−αk + 2m) |k〉 (5.4)

where m = 1
N

∑N−1
k=0 αk is the mean of αk . Hence, it is clear that the action of (2 |ψ〉〈ψ| − I) is essentially

an inversion about the mean. Therefore, one iteration of Grover operator results in amplification of the

amplitude of the marked item (See Fig. 3).
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|α〉

∣∣∣ψ〉

∣∣∣Oψ〉

∣∣∣Gψ〉

θ

θ/2

θ/2

Fig. 4: Grover operator as rotation of the state vector |ψ〉 towards the superposition |β〉 of all the solution
vectors of the search problem.

We note that if M = 1 then the Grover operator G is applied R ≈ π
4

√
N times. After R iteration of G

the measurement of the system yields the marked item. To summarize Grover’s algorithm for the case

M = 1 is as follows.

1. Initialize the input n qubits as |0〉⊗n.

2. Apply H⊗n

3. Apply Grover operator G a total of R ≈ π
4

√
N times

4. Measure the n qubits.

Some remarks:

1. It is important to note that there is an optimum number of times (the integer R as above) that the

Grover’s iteration should be carried out to obtain the maximum probability of success (close to 1).

This is in contrast to the classical behavior where the more iterations lead to better results.

2. The Grover operatorG (see Eq.(5.3)) could be very nicely explained as rotation in a two dimensional

space spanned by the vectors |α〉 and |β〉 with

|α〉 =
1

√
N −M

∑
x,x not marked

|x〉 , and |β〉 =
1
√
M

∑
x,x marked

|x〉 .

The initial state |ψ〉 is in the span of |α〉 and |β〉, as it is easily verified that |ψ〉 =
√
N−M
N |α〉+

√
M
N |β〉.

If we set cos(θ2 ) =
√
N−M
N then the Grover operator may be written as

[ cos(θ) −sin(θ)
sin(θ) cos(θ)

]
. The number of

iteration R is chosen such that Rθ is the angle required to turn the state vector ψ very close to |β〉.
For example, if 1 = M << N then we get θ ≈ sin(θ) = 2sin(θ2 )cos(θ2 ) ≈ 2

√
1
N . Also as ψ is initially

almost along the |α〉 the total turn is approximately π
2 . Therefore, we must have Rθ ≈ 2R

√
1
N ≈

π
2 .

And we see that R ≈ π
4

√
N . We refer readers to [18] for further details.

5.2 Method IV: Quantum exhaustive search algorithm

Several quantum search algorithms based on Grover’s algorithm have been treated in the literature. If

one is looking for M marked things out of N things, with number M not known a priori, then the ex-

pected running time of these algorithms are O(
√
N
M ). Dürr and Høyer have given a quantum algorithm
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in [9] to find the minimum cost. Algorithm 2 described below is an adaptation of their algorithm suited

for our framework to solve a trajectory optimization problem. We will give a computational example

in Sect. 6.1.5. We note that Algorithm 2 finds the global minimum for the problem described in Sect. 3

with the cost function being the discrete version of Eq. (2.1). It takes a list of size N as input. This list

contains all the possible states of the system. The algorithm proceeds by first selecting a random state

from the input list and setting its associated cost as the running minimum. The value of parameter λ

and the variable m is also initialized. The variable m is initially set to 1 and later in the algorithm it is

adaptively scaled by λ, by setting its value to λm if the search for a state with lower associated cost than

the current running minimum cost is not successful. The variable m effectively controls the number of

Grover’s rotation r that is performed. A priori, it is not known that how many of the states have their

associated costs less than the current running minimum cost and therefore m is adaptively scaled to

ensure that a correct value for r is selected as required by Grover’s search algorithm.

Algorithm 2: Quantum algorithm for trajectory optimization

/* Description: The objective of this quantum algorithm is find the minimum cost

for the problem described in Sect. 3 with the cost function being the discrete

version of Eq. (2.1) and N = ST with S and T as in Eq. (3.7) and Eq. (3.8). */

1 function findMinCostQuantum ({Y0,Y1,Y2 . . . ,YN−1});
Input : a list of size N containing all the possible states of the system.
Output: (the index of an admissible state which has the minimum cost, the associated minimum

cost).
2 Set y = a random state from the input list.
3 Set m = 1. Set the total number of Grover’s rotation, G = 0.
4 Set the value of the parameter λ (λ = 8

7 is used in [4], but λ = 1.34 is better as suggested in [6]).
5 while G is less than 22.5

√
N + 1.4log2(N ) do

6 Choose r uniformly at random from {0,1,2, . . .dm− 1e}
7 Perform Grover’s search with r rotation to find a state x with cost(x) < cost(y).
8 Increment the total number of Grover’s rotation, G = G+ r.
9 if Search is successful then

10 Set y = x, m = 1
11 else
12 Set x = y, m = λm
13 end
14 Return (x, cost(x))

The algorithm runs until the total accumulated number of Grover’s rotation G is less than 22.5
√
N +

1.4log2(N ). We refer readers to [9] for further details. We also note that the running time of the above

algorithm is optimal up to a constant prefactor. See [6] and [16] for other variants of the above algorithm

with smaller constant prefactors. We note that in place of Algorithm 2, these other variants may also be

employed to solve the trajectory optimization problem.

It is clear that the quantum algorithms discussed above are of the order of O(
√
N ). Hence, they are

far superior to their classical counterparts which are of the order of O(N ).

5.3 Method V: Quantum random search algorithm

As before we consider the problem of finding the minimum cost for the problem described in Sect. 3,

with the cost function being the discrete version of Eq. (2.1) andN = ST with S and T as in Eq. (3.7) and

Eq. (3.8). As the first step of this algorithm a predetermined number of states are selected uniformly at
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random out of the total N states. Then Algorithm 2 is applied on these selected states. Similar to the

classical random search algorithm, this algorithm is especially useful in situations wherein the discrete

search space is so big that an exhaustive search has a prohibitively high computational cost. We will

consider a computational example in Sect. 6.1.6.

5.4 Method VI: Quantum hybrid search algorithm

We consider a quantum hybrid algorithm to solve the problem described in Sect.3 with the cost function

being the discrete version of Eq. (2.1) and N = ST with S and T as in Eq. (3.7) and Eq. (3.8). A quantum

hybrid search algorithm is a combination of a quantum random search algorithm and a pure exhaustive

quantum search algorithm. It combines the best attributes of both a quantum random search algorithm

and a pure quantum exhaustive search algorithm. To begin with, in a hybrid algorithm first a fixed

number of states are selected uniformly at random out of the total N states and on these selected states

the quantum algorithm described earlier (Algorithm 2) is applied. Next, using the approximate solution

thus obtained a finer discretization is carried out. Finally, an exhaustive quantum search is carried out

using Algorithm 2 in this finer grid. A computational example is given in Sect. 6.1.7.

Here it is interesting to note that [7] also describes a hybrid method, by effectively combining local

search with Grover’s algorithm, to obtain the global optimum of an objective function. The quantum

basin hopper algorithm, proposed in [7], considers a black-box real-valued objective function f de-

fined on a discrete domain S, of size 2n. It also makes certain regularity assumptions on the objective

function and its domain. As the method in [7] does not deal with the problem of discretization, it is

not directly applicable for solving a continuous trajectory optimization problem. It is in this context

that our framework could be useful. Following our discretization approach, depending upon the pres-

ence of any regularity or local structure in the problem, various local search methods and variants

of Grover’s algorithms, including the method in [7], can be used in our framework. Although, in our

present work (including the computational examples that follow), we do not make any assumptions

about the availability of local search methods or about the presence of any local structure in the opti-

mization problems.

6 Computational examples

Now we consider a couple of examples for illustrating our method.

6.1 Brachistochrone problem

The first example that we take is the well-known Brachistochrone problem. The problem is to find

the required trajectory of a particle starting from the rest under the influence of gravity, without any

friction, such that it slides from the one fixed point to the other in the least possible time. We let

X(t) = x(t)i + y(t)j to represent the position of the particle. The boundary condition that we consider is

(x(τ0), y(τ0)) = (0,2) and (x(τf ), y(τf )) = (π,0) with τ0 = 0. The goal is to minimize τf given by

τf =
∫ π

0

√√√
1 +

(
dy
dx

)2

2gy
dx. (6.1)

Next we describe some possible approaches for discretization that could be employed to solve the

brachistochrone problem.
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x0 x1 x2 · · · · · · xk xk+1 · · · · · · xζ

y[1]

y[2]

y[3]

y[4]
··
·

y[i]

y[i+1]

··
·

y[L−1]

y[L]

y[0]

Fig. 5: Brachistochrone problem: discretization of both the dependent variable y as well as the indepen-
dent variable x is carried out. Note that at x = xk , the corresponding y(xk) is allowed to take values only
from the set {y[i] : i = 0,1 · · ·L}. The possible values for y(xk) are shown with thick black dots.

6.1.1 Global dicretization in physical space

Out of the infinitely many possible paths the goal is to pick the path with the minimum time. For

practical purposes it is sufficient to find a ‘good enough’ approximate solution (based on acceptable

levels of errors). The discretization is chosen based on what constitute a ‘good enough’ solution in a

given context. In our present example, the physical space consists of the rectangle [0,π] × [0,2] in R
2.

Of course, one may as well consider a bigger rectangle to allow for the possibility of better solutions.

One can now discretize the rectangle [0,π]× [0,2] in several possible ways. For example, let xk = kπ
ζ for

k = 0,1 · · ·ζ. Let yk ∈ {y[i] = 2i
L : i = 0,1 · · ·L} for k = 1 to ζ−1. We set y0 = 2 and yζ = 0 to take into account

the boundary condition. Next we use Lagrange interpolation to set y(x) =
∑ζ
k=0 ykφk(x). Here φk(x) is

chosen such that φk(xj ) = 1 if j = k and φk(xj ) = 0 otherwise. More explicitly,

φk(x) =
ζ∏

j=0, j,k

(x − xj )
xk − xj

. (6.2)

Essentially, it means that once a discretization of x is carried out then we require that at x = xk , the

corresponding y(xk) can only have values from the set {yk} (see Fig. 5). We note that with the above

discretization there are N = (L+ 1)ζ−1 total possible cases need to be considered.

Theoretically, one can always approach the correct solution to the desired accuracy by making the

discrete grid finer. However, the discrete search space grows very rapidly and other methods should be

combined with exhaustive search in practical applications. We consider a few examples to compare the

correctness of the results with respect to the size of the discrete search spaces and the points chosen

for discretization. Examples A and B are chosen to highlight the effect of uniform and non-uniform

grid spacing respectively (for ζ = 5). Example C is chosen to highlight the effect of having a finer grid

resolution.
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Root Mean Square and Percentage Error

Example A Example B Example C

RMSE: 0.0431602981808 0.0441659854713 0.00839381927831
% Error: 0.6 0.6 0.08

Table 1: Root mean square and the percentage errors between the minimum time obtained in Example
A, B and C and the correct analytical minimum time for the brachistochrone problem.

– Example A: Consider the path obtained by using the Lagrange interpolation on the (x,y) coordinates

listed in Table 2,

fA(x) =
ζ∑
i=0

aix
i

with

a0 = 2, a1 = −2.72552840044871,

a2 = 2.37999238659866, a3 = −1.34381393471665,

a4 = 0.387647767429487, a5 = −0.0425490057689243.

This path can be discovered by taking L = 40 and ζ = 5 in the preceding discussion. Therefore, the

total size of the discrete search space is 414 = 2825761. We note that the time obtained in this case,

1.00946330885 sec, differs from the correct analytical solutions 1.0035449615773016 sec by only

about 0.6%.

– Example B: Let us now consider a different discretization and pick the points as shown in Table 3.

The path obtained by using the Lagrange interpolation in this case is

fB(x) =
ζ∑
i=0

aix
i ,

with

a0 = 2, a1 = −2.72732233702330,

a2 = 2.08090516797775, a3 = −0.962129500276245,

a4 = 0.229887380333958, a5 = −0.0213407110121635.

This path can be discovered by using a discrete search space of size 414 = 2825761. The minimum

time obtained is 1.00960568357 sec. The error in the time obtained in this case is 0.6%, the same as

the previous case.

– Example C: In this example we get a more accurate result by considering more points as shown

in Table 4. The size of the discrete search space to discover this path, if we search exhaustively, is

20112. The minimum time obtained in this case is 1.00436810144 sec and the error percentage is

about 0.08%.

In Fig. 6 the paths for the above examples are plotted along with the cycloid resulting from the

correct analytical solution. Errors associated with these paths are shown in Table 1. We note that results

shown in Fig.6 for Examples A, B and C are in good agreement with the analytical solution. As expected,

Example C has the least error (as noted in Table 1) which can be attributed to a finer grid resolution.

Some remarks:
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0

1

2

Y
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Path: Cycloid
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Fig. 6: The paths for Examples A, B and C are plotted along with the cycloid resulting from the correct
analytical solution of the brachistochrone problem. The nodes in the above examples (Examples A &
B: 6 nodes, Example C: 14 nodes) represent the solution points on the discretization grid (see Table 2,
Table 3, and Table 4).

Example A

x: 0
π
5

2π
5

3π
5

4π
5

π

y: 2 0.95 0.50 0.20 0.05 0

Table 2: Uniformly spaced sample points in x for the brachistochrone problem.

Example B

x: 0 0.5 1.0 2.25 2.5 π

y: 2 1.05 0.60 0.10 0.05 0

Table 3: Non-uniformly spaced sample points in x for the brachistochrone problem.

Example C

x: 0 0.05 0.25 0.5 0.75 1.0 1.5 2.0 2.25 2.5 2.75 2.9 3.05 3.14

y: 2 1.78 1.39 1.07 0.84 0.65 0.36 0.16 0.1 0.05 0.02 0.01 0 0

Table 4: A finer grid resolution for obtaining a more accurate solution for the brachistochrone problem.

1. One can easily put the above description in the general discretization framework that we discussed

in the Sect. 3. For example, setting x(t) = t and y(t) = f (t) is the same as saying y = f (x).

2. In the above discussion, we have picked the discrete search spaces rather naively, just to show that

it is possible to get a good solution (within 0.6% accuracy) even in such cases. One can get a smaller

discrete search space by starting with an initial guess, for example in brachistochrone problem this

could be a linear path, or one can do multiple passes of search by progressively refining the discrete

grid in later passes.
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Fig. 7: Errors in the paths obtained in the Example A, B and C and the cycloid resulting from the correct
analytical solution of the brachistochrone problem.

6.1.2 Discretization in coefficient space

Sometimes due to the nature of the optimization problem it is more convenient and computationally

efficient to discretize in the coefficient space. We will solve the brachistochrone problem by employing

this technique. Suppose y(x) =
∑ζ−1
n=0 anx

n is a possible path. We want to discretize the coefficients an.

In order to perform this discretization, we need to first determine the range of the coefficients an, i.e.,

their minimum and maximum values. The boundary condition, y(0) = 2 implies

a0 = 2, (6.3)

and we use the boundary condition y(π) = 0 to fix

a1 =
1
π

−a0 −
ζ−1∑
n=2

−anπn
 . (6.4)

Now guided by the physical space of this problem we impose the condition that

|y(x)| ≤ 2 for x ∈ [0,π]. (6.5)

Further, we note some interesting results in approximation theory (ref. [20], Theorems 16.3.1 and

16.3.2 therein) on the bounds on coefficients of bounded polynomials. According to these theorems,

given a bound on y(x), such as in Eq. (6.5), the bound on the coefficients of the polynomial y(x) can be

determined by using the coefficients of Chebyshev polynomials of the first kind. In the following, we

provide more details on these theorems to demonstrate their application in our context.
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Let Tn(x) be the Chebyshev polynomial of the first kind of degree n with the series expansion given

as Tn(x) =
∑n
k=0 tn,kx

k . Let 1
2y(π2 (x + 1)) =

∑ζ−1
n=0 bnx

n. It is clear that |12y(π2 (x + 1))|≤ 1 for |x|≤ 1, and

therefore it satisfies the hypothesis of the earlier mentioned theorems in [20]. Hence, we obtain the

following bounds on the coefficients of 1
2y(π2 (x+ 1))

|bn−2µ| ≤ |tn,n−2µ| for µ = 0, · · · ,bn
2
c , (6.6)

|bn−2µ−1| ≤ |tn−1,n−2µ−1| for µ = 0, · · · ,bn− 1
2
c . (6.7)

Of course, the coefficients a1, · · ·aζ−1 can be expressed in terms of the coefficients b1, · · ·bζ−1 using the

relation
∑ζ−1
n=0 bnx

n = 1
2
∑ζ−1
n=0 an

(
π
2 (x+ 1)

)n
, and therefore from the above relations using the bounds on

coefficients b1, · · ·bζ−1 coefficients a1, · · ·aζ−1 can be discretized.

Example D: We set ζ = 6 and note that T5(x) = 16x5 − 20x3 + 5x and T4(x) = 8x4 − 8x2 + 1. On using

Eq. (6.3) through Eq. (6.7), we obtain the following conditions

|b2|≤ 8, |b3|≤ 20, |b4|≤ 8, |b5|≤ 16,

a5 = 64b5/π
5, a4 = 32(b4 − 5b5)/π4, a3 = 16(b3 − 4b4 + 10b5)/π3

a2 = 8(b2 − 3b3 + 6b4 − 10b5)/π2, a1 = −2/π − a2π − a3π
2 − a4π

3 − a5π
4, a0 = 2. (6.8)

Using the above relations, we discretized the coefficients a2, a3, a4 and a5 by letting each of b2 and b4

to take values in the set {−8,−7.8, · · ·7.8,8} of cardinality 81, b3 to take values in the set {−20,−19.5, · · · ,
19.5,20} of cardinality 81, and b5 to take values in the set {−16,−15.8, · · · ,15.8,16} of cardinality 161.

Then one can find the path y(x) = −0.0418x5 + 0.3942x4 − 1.4449x3 + 2.7559x2 − 3.1831x + 2 with the

corresponding minimum time of 1.01067460259 sec. We note that the error in the minimum time cal-

culated is about 0.7% and the total number of paths considered is 81 × 81 × 81 × 161 = 85562001. Of

course, the accuracy can be further improved by making the discretization grid finer as well as increas-

ing ζ.

A remark: In the above example, an error of 0.7% in the minimum time was obtained with a search

space of the size 85562001. A much smaller search space will suffice, if a larger error in calculating the

minimum time is allowed. For comparison we note that, using a similar approach as discussed above

for a degree three polynomial, i.e., for ζ = 4, we obtained the minimum time with an error of 1.4%, by

considering a search space of the size 1600.

6.1.3 Classical random search algorithm in physical space

Example E: Now we consider the same global discretization using the actual physical space that we

considered in the Example A, Sect. 6.1.1, with ζ = 5 and L = 40.

Then the best path that we obtained on a trial run was

fE(x) =
ζ∑
i=0

aix
i ,

with

a0 = 2, a1 = −3.09025847836764,

a2 = 2.99741834941916, a3 = −1.62937439584393,

a4 = 0.427749260611848, a5 = 0.0425490057689243,
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Table 5: A comparison of performances of different search methods for the brachistochrone problem.
(Assume ε = 2.46.)

Search Search method description Cost Minimum time Error %
method

I Classical exhaustive 2825761 1.0095 0.6
(Example A, physical space)

I Classical exhaustive 85562001 1.0107 0.7
(Example D, coefficient space)

II Classical randomized 5000 1.0099 0.7

III Classical hybrid 8249 1.0085 0.5

IV Quantum exhaustive
√

2825761ε u 4135 1.0095 0.6

V Quantum random
√

5000ε u 174 1.0099 0.7

VI Quantum hybrid (
√

5000 +
√

3249)ε u 314 1.0085 0.5

and the corresponding minimum time found was 1.00993422472 sec. We note that the error in the

minimum time calculated is about 0.7% and the total number of paths considered is 5000. Of course,

the accuracy can be increased by making the discretization grid finer as well as increasing the number

of paths considered.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Y

Path: Example D
Path: Example E
Path: Example F
Path: Cycloid

Fig. 8: Comparison of optimal paths obtained by using different approaches such as a discretization in
the coefficient spaces (Example D), random search in a discretized physical space (Example E) and a
hybrid search combining global exhaustive search with coarse-grained random search (Example F).

6.1.4 Classical hybrid search algorithm

In many situations, it is a good idea to follow the chosen discretization method by a random search to

obtain an approximate solution. Then one can pick a finer discrete grid to further improve the result

of the random search by performing an exhaustive search in a finer discrete grid near the approximate

solution given by the random search.
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Example F: The result obtained from the random search in the Sect. 6.1.3 is further refined by per-

forming an exhaustive search near the best path given by the random search algorithm. We consider

xk = kπ
ζ for k = 0 to ζ and ζ = 5. Further, we set y(x0) = 2, y(x1) ∈ {0.8,0.85,0.90, 0.95}, y(x2) ∈

{0.45,0.50,0.55,0.60}, y(x3) ∈ {0.20,0.21,0.22, · · ·0.39} and y(x4) ∈ {0.00,0.01,0.02, · · ·0.19} and y(x5) = π.

The best path obtained is

fF(x) =
ζ∑
i=0

aix
i ,

with

a0 = 2, a1 = −3.05046974259466,

a2 = 2.96364462153838, a3 = −1.7066436970901,

a4 = 0.481217918188328, a5 = −0.0510588069227091,

and the corresponding minimum time 1.00852712176 sec. We note that the error in the minimum time

calculated is about 0.5% and the total number of paths considered is 5000 for the random search and

subsequently 3249 for the exhaustive search, i.e., a total of 8249 paths.

6.1.5 Quantum exhaustive search algorithm

As noted earlier, quantum search algorithms give a quadratic speed-up compared to the classical algo-

rithms in search problems. Therefore, the quantum search algorithm, Algorithm 2, could be employed

to perform an exhaustive search. We remark that the computational cost of Algorithm 2 in performing

an exhaustive search on the states resulting from the same discretization as considered in Example A, is

4135 whereas the cost for the equivalent classical exhaustive search was 2825761 as noted earlier (see

the Table 5).

6.1.6 Quantum random search algorithm

The random search that we considered earlier using the classical algorithm in Example E, Sect. 6.1.3,

can be carried out using the quantum search algorithm. If we simply pick 5000 random paths and

apply the quantum search algorithm, Algorithm 2, on these paths to select the optimum path, then the

cost of the quantum algorithm would be
√

5000ε u 174 paths, where according to Theorem 6.2, [6], the

constant ε has be taken to be approximately equal to 2.46

6.1.7 Quantum hybrid search algorithm

The hybrid quantum algorithm considered here is a two step quantum algorithm. The first step of this

algorithm is an application of the quantum random search, in which the quantum algorithm, Algo-

rithm 2, is applied on a predetermined number of states selected uniformly at random out of the total

N states. The first step results in an approximate solution of the trajectory optimization problem. In the

second step, we propose to employ Algorithm 2 again, following the random search, for performing an

exhaustive search in a finer discrete grid near the approximate solution obtained earlier. Clearly such

a method combines the best features of both the randomized algorithm and the exhaustive quantum

search algorithm and can be advantageous in many situations. If we continue with the example of the

random quantum algorithm discussed in the previous subsection as the first step of the hybrid quantum

algorithm then the corresponding cost of the first step would be
√

5000ε u 174. The computational cost

for the subsequent step (with application of Algorithm 2 again but on the paths considered in Example
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Example G

θ:
π
2

5π
8

3π
4

7π
8

r: 0 0.26 0.47 0.62

Table 6: Uniformly spaced 4 sample points in θ for the isoperimetric problem.

F, Sect. 6.1.4) would be
√

3249ε u 140. Hence, the total computational cost for the hybrid quantum

algorithm is u 174 + 140 = 314. A summary of the costs associated to various methods is given in the

Table 5.

6.2 Isoperimetric problem

As our second example, we consider the well-known isoperimetric problem [3]. The objective in this

problem is to find the maximum area enclosed between a curve of the given fixed length and a given

fixed straight line l, such that the endpoints of the curve lie on the straight line l. This problem could be

solved by employing the principles of calculus of variations. Here we will obtain a numerical solution

of this problem based on our proposed framework.

Let r = r(θ), for θ = π
2 to θ = π, be a representation of the curve in polar coordinates with the

boundary condition r(π2 ) = 0. Let the length of the curve be π
3 , i.e.,

∫ π

π/2

√
r2 +

(
dr
dθ

)2

dθ =
π
3
. (6.5)

Let the fixed straight line be the line θ = π. The objective function to be maximized is the area A given

by

A =
∫ π

π/2

1
2
r2 dθ. (6.6)

Next we explain our discretization scheme for this problem. The variable θ is treated as the inde-

pendent variable and the variable r = r(θ) is assumed to be the dependent variable. The parameter

space consisting of the rectangle [π/2,π] × [0,b] in R
2 is discretized, with a suitably chosen b ≤ π

3 . We

let θk = kπ
ζ for k = 0,1 · · ·ζ. Let rk = r(θk) ∈ {r[i] = bi

L : i = 0,1 · · ·L} for k = 1 to ζ − 1. We set r(π/2) = 0 to

take into account the boundary condition. Further, using Lagrange interpolation we can determine the

function r = r(θ) as r = c
∑ζ
k=0 rkφk(θ) with c chosen such that Eq. (6.5) is satisfied.

We note that with the above discretization there are N = (L + 1)ζ total possible paths. We fix b = 1

and L = 100 for the following examples.

6.2.1 Global discretization in physical space

Examples G, H and I are given below to show the effect of increasing grid resolution on the accuracy of

solutions.

– Example G: We consider the path obtained by using the Lagrange interpolation using the data of

polar-coordinates (r,θ) contained in Table 6,

rG(θ) = π
ζ∑
i=0

aiθ
i
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Fig. 9: The paths for Examples G, H and I are plotted along with the semicircle resulting from the
correct analytical solution of the isoperimetric problem. The nodes in the above examples represent the
solution points on the discretization grid (see Table 6, Table 7, and Table 8).

Example H

θ:
π
2

7π
12

2π
3

3π
4

5π
6

11π
12

r: 0 0.17 0.33 0.47 0.58 0.64

Table 7: Uniformly spaced 6 sample points in θ for the isoperimetric problem.
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Example I

θ:
π
2

9π
16

5π
8

11π
16

3π
4

13π
16

7π
8

15π
16

r: 0 0.13 0.26 0.37 0.47 0.55 0.62 0.65

Table 8: A finer grid resolution for obtaining a more accurate solution for the isoperimetric problem.

with

a0 = −0.241651718296050, a1 = 0.0224680794862180,

a2 = 0.128732612832473, a3 = −0.0287105866008127,

This path can be discovered by considering ζ = 3 in the preceding discussion. The size of the dis-

crete search space is 1014. We note that the maximum area obtained in this case, 0.174442279371647

sq. units, differs from the correct analytical solutions 0.17453292519 sq. units by only about 0.052%.

– Example H: Let us now consider a different discretization and pick the points as shown in Table 7.

The path obtained by using the Lagrange interpolation in this case is

rG(θ) = π
ζ∑
i=0

aiθ
i ,

with

a0 = 0.117976693821150, a1 = −0.776296300192081,

a2 = 0.826825768983352, a3 = −0.328818088810480,

a4 = 0.0634200425140409, a5 = −0.00526623300376067.

This path can be discovered by using a discrete search space of size 1016. The maximum area ob-

tained is 0.174481616034558 sq. units. The error in the time obtained in this case is 0.029%, which

is better than the previous case.

– Example I: In this example, we get a more accurate result by considering even more points as shown

in Table 8. The size of the discrete search space to discover this path, if we search exhaustively,

is 1018. The maximum area obtained in this case is 0.174531915079274 sq. units and the error

percentage is less than 0.0006%.

6.2.2 Quantum exhaustive search algorithm

The quantum search algorithm, Algorithm 2, could be employed to perform an exhaustive search using

the same discretization as considered in Examples G, H and I to gain significant improvement in the

size of the search space as discussed earlier. In fact the size of the search space on using Algorithm 2,

turns out to be 1012 ε, 1013 ε and 1014 ε, for the Examples G, H and I respectively, with ε = 2.46 (see

the Table 9).

6.3 Moon landing problem

Our third example is the Moon landing problem considered in [11] and [17]. The problem is to find the

optimum control for soft landing a spacecraft on the surface of the moon such that the fuel consumption
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Table 9: A comparison of performances of different search methods for the isoperimetric problem.
(Assume ε = 2.46.)

Search Search method description Cost Maximum area Error %
method

I Classical exhaustive: Example G 1014 0.174442279371647 0.052

I Classical exhaustive: Example H 1016 0.174481616034558 0.029

I Classical exhaustive: Example I 1018 0.174531915079274 0.0006

IV Quantum exhaustive: Example G 1012 ε 0.174442279371647 0.052

IV Quantum exhaustive: Example H 1013 ε 0.174481616034558 0.029

IV Quantum exhaustive: Example I 1014 ε 0.174531915079274 0.0006

is the minimum. We assume that the motion is vertical and that the lunar gravitation is a constant,

g = 1.63, throughout the motion. Let m(t) be the mass of the spacecraft including the fuel at the time t.

Let h(t) and v(t) denote the height and the velocity of the spacecraft at the time t. The thrust at time t,

say T (t), is given by −k dm(t)
dt = −ku(t) and we treat u(t) = dm(t)

dt as a control variable. The control problem

can now be described as

Maximize m(t), (6.7)

subject to the equations of motion

dh(t)
dt

= v(t),
d2h(t)
dt2

= −g − k u(t)
m(t)

, (6.8)

and the constraints

m(t) ≥ma = the mass of the spacecraft without any fuel, −µ ≤ u(t) ≤ 0, (6.9)

where µ is a constant which determines the maximum thrust. Also, suppose the total time of flight is

τ then the condition for the soft landing is that v(τ) = 0 and h(τ) = 0 and h(t) > 0 for t < τ . The initial

condition is given by

m(0) =m0, v(0) = v0 andh(0) = h0. (6.10)

It easily follows on integrating the second equation of motion in Eq. (6.8) that

m(t) =m0 exp
(v0 − gτ

k

)
.

Therefore, instead of maximizingm(t) one can consider the equivalent objective function of minimizing

the time of flight τ .

Next we describe our method for solving this equivalent control problem. We consider the following

discretization. We pick 0 = t0 < t1 < t2 < t3 < t4 = tmax as time points for discretization of the problem.
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Fig. 10: Time evolution of height for the moon landing problem

We set

u(t) =



a1 0 ≤ t ≤ t1
a2 t1 < t ≤ t2
a3 t2 < t ≤ t3
a4 t3 < t ≤ t4

.

Here, a2, a3 and a4 are chosen from a discrete set {αk} for k = 1 to n with −µ ≤ αk < 0 and a1 is to be

determined later. We note that, now with the help of equation of motions and the initial conditions

m(t),v(t) and h(t) could be completely determined. In fact we get,

m(t) =
{
ak(t − tk−1) +m(tk−1), tk−1 ≤ t ≤ tk for k = 1,2,3,4.

and

v(t) =
{
v0 − gt − k log

[
ak(t−tk−1)+m(tk−1)

m0

]
, tk−1 ≤ t ≤ tk for k = 1,2,3,4.

Next, on integrating v(t) we get h(t) = h0 +
∫ t

0 v(x)dx. We treat a1 and τ as a variable to solve the con-

straint equations for a soft landing, i.e., we solve for τ and a1 such that h(τ) = 0 and v(τ) = 0 with h(t) > 0

for t < τ . We also let a2, a3 and a4 take value in the discrete set {−15,−14.99,−14.98, · · ·0.1}. For the initial

conditions h0 = 50002.65,v0 = −178,m0 = 2500 and the sampling points t1 = 25, t2 = 75, t3 = 200 and

t4 = 400 with g = 1.63, k = 585,µ = −15,ma = 800 we obtain the following solution: a1 = −0.0018, a2 =

−6.30, a3 = −6.30, a4 = −6.35 and τ = 290.98 andm(τ) = 819.76. The time evolution of the mass, velocity

and height as well as the variation of height versus velocity are shown in figures 11 through 13. These

results appear to be in agreement with the known solutions of this problem. We also note that these

results are based on Method I (see Sect. 4.1). All the other methods (Method II to Method VI) may also

be applied to solve this problem giving similar results. The performance comparisons of these methods

are also expected to be similar those given in Table 5 for the brachistochrone problem, with quantum
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Fig. 11: Time evolution of velocity for the moon landing problem (note that the straight line represents
the free fall before the engine is switched on)

algorithms outperforming their classical counterparts.

Some remarks:

1. We have arbitrarily chosen a1 as the variable chosen for satisfying the constraints for a soft landing.

One can easily make an alternative choice.

2. The choices of the time instants t1, t2, t3 and t4 were also arbitrary. In fact, one can let t1, t2, · · · t4 take

values in an appropriately chosen discrete set and then pick the best possible solutions.

7 Conclusion

We have shown that a trajectory optimization problem (or a problem involving calculus of variations)

can be formulated in the form of a search problem in a discrete space. An important feature of this

work is our formulation of the discretization of the optimization problem incorporating the treatment

of the dependent variable space in terms of appropriately chosen coarse grained states. The number of

the coarse grained states is chosen to be significantly less than the traditional digital computer repre-

sentations. This not only reduces the computational cost but also enables us to employ deterministic

and stochastic approaches for obtaining global optimum. In particular, we presented the use of our pro-

posed discretization approach and classical methods (Methods I–III) to solve the trajectory optimiza-

tion problem. The proposed framework also enables the use of quantum computational algorithms for

global (trajectory) optimization. In this work, we showed that the discrete search problem can be solved

by a variety of quantum algorithms including a quantum exhaustive search in physical space or the co-

efficient space (Method IV), a quantum randomized search algorithm (Method V), or by employing a

quantum hybrid algorithm (Method VI) depending on the nature of the problem. Quantum search algo-

rithms offer a quadratic speed-up (in comparison to the traditional non-quantum approaches) and may



Trajectory optimization using quantum computing 25

250 200 150 100 50 0

velocity, v

0

1

2

3

4

5

6

h
e
ig

h
t,

 h

×104

h

Fig. 12: Variation of height and velocity for the moon landing problem
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Fig. 13: Time evolution of mass for the moon landing problem

well become methods of choice in many optimization applications once quantum computers become

widely accessible and reach their true potential.
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