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e Symbolic powers: p(" = p"R,NR.
e Evidently, p” C p("). Question: how far is this from equality?
e Answer [Swanson, '00]: for nice rings, Yp3hVn : p(h") C pn.

e Answer [ELS '01, HH '02, Hara '05, MS '17]: If R is regular,
then h = dim R works for all p!

e Question: can we find a uniform h that works for non-regular
rings?
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Motivation: Symbolic Powers

Sketch of ELS/Hara/MS proof: set d = dim R.

(e (é) T<p(d")> _ <(p(dn))n/n> (é) _ <(p(dn)>1/n>” (é) o

(1): Because R is “F-regular”

(2): “Subadditivity”: need R regular!

(3): Holds generally (theory of integral closures + Skoda's
theorem)

Key idea: replace T(p(d") with an ideal so that (2) holds always,

and hope (1) holds sometimes



Interlude: Cartier Algebras and Test Ideas

R a f.g. k-algebra, domain, char(k) = p > 0.

e

e Frobenius: F¢(x) = xP



Interlude: Cartier Algebras and Test Ideas

R a f.g. k-algebra, domain, char(k) = p > 0.
e Frobenius: F¢(x) = xP°

e 2 := restriction of scalars along F¢: R — R



Interlude: Cartier Algebras and Test Ideas

R a f.g. k-algebra, domain, char(k) = p > 0.

e Frobenius: F¢(x) = xP°
e 2 := restriction of scalars along F¢: R — R

e Concretely, FER =



Interlude: Cartier Algebras and Test Ideas

R a f.g. k-algebra, domain, char(k) = p > 0.

e Frobenius: F¢(x) = xP°
e 2 := restriction of scalars along F¢: R — R

e Concretely, FFR = {Ffx | x € R} 2 R as ab. group,



Interlude: Cartier Algebras and Test Ideas

R a f.g. k-algebra, domain, char(k) = p > 0.

e Frobenius: F¢(x) = xP°
e 2 := restriction of scalars along F¢: R — R

e Concretely, FFR = {Ffx | x € R} 2 R as ab. group, but
R-module structure given by

€
r-Fix=FSrP x



Interlude: Cartier Algebras and Test Ideas

R a f.g. k-algebra, domain, char(k) = p > 0.
e Frobenius: F¢(x) = xP°

e 2 := restriction of scalars along F¢: R — R

e Concretely, FFR = {Ffx | x € R} 2 R as ab. group, but
R-module structure given by

r-Féx = FrP°x
e An R-linear map ¢ : FSR — R satisfies

@(F2(a+ b)) = p(F2a) + o(F2b),
o(F2r x) = p(rFex) = rp(FEx)
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Cr =, Homg(FER,R).

A Cartier algebra on R is a subset Z C Cg.

PDe = P NHomg (FER, R)

Test ideal of 7: 7(R, Z) := the unique, minimal J # 0 such
that ¢ (F£J) C J Ve, Yy € Ze.

o (It exists!)
e “J ¢ are compatible”
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Multiplying a Cart. Alg. by an ideal

e Given ¥, a; C R, construct

@a1~~-an::U{cp(fo-—)

@

¢ E Do, x € Haf?e_l}

1

L T(R7a1"'an) ::T(R,CRal"'Cln)
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The diagonal cartier algebra

e Subadditivity: if R regular, then 7(R, ab) C 7(R, a)7(R, b).
e Question: is there a version that works for non-regular rings?

e Answer 1 (Takagi, ‘07): if R is equidimensional,
jac(R)7(R,ab) C 7(R,a)7(R,b)

e (Doesn't work for our purposes if p(?") ¢ jac(R))
e Answer 2: Use Cartier algebras!
e For any n € N, define Z(n), as the set of ¢ : FFR — R such
that

FeRen .72 o RO

o i

FER—2 - R
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The diagonal cartier algebra

Theorem (S.)

T(R,Z(n)ay---a,) C7(R,a1)---7(R,ap)

Proof.
Hompgen(FER®" R®") = Homg(FER, R)®"

=7 (R, u® - ®ay) C7(R,a1) ®--- @ 7(R, )
= p (7 (R®"a1®---®an)) Cp(r(R,a1) ® -+ ® 7(R, an))
—r(R,a1)---7(R, ap)

The set Z(n) is constructed specifically so that

(R, 2(n)ay---a,) C p (T (R®”,a1 X ® Cln))
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Upshot: Symbolic Powers and Diagonal F-regularity

e Question: When is p(?") C 7(R, 2(n)pld)?
e Just need Z(n) to be large (F-regular)
e Def: R is diagonally F-regular if 2(n) is F-regular for all n.

e Question: Are there any non-regular rings that are diagonally
F-regular?

Theorem (Carvajal-Rojas, S.)
Let k be a field of characteristic p. Then the Segre product
k[xo, .-, % |#k[y0,- -, Ys] is diagonally F-regular.

Thus, p((r+s+1)n) C p for all p € Spec(k[x, - - -, X ]#k[Y0; - - -, ¥s])
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Computing Z(n)

e For affine torics, computing Z(n) is equivalent to solving a
combinatorial problem.

e affine toric R C k[x1,...,xq] ¢+ cones C C R?

e ac #de Pr <> gens m, € Homg(FER, R)

Theorem (S.)
If R affine toric, then 2(2). is generated by

{ma | PR (a — PRr) is “big”}
ZCRYisbigifVve sZ93scZ:vt+seZ
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R = klx,y, u,v]/(xy — uv) = klx,y, u, xyu™"]

-05
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