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Symbolic powers in rings of positive characteristic
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Learning objectives

We can understand the symbolic powers of (positive characteristic) rings by closely studying
the maps RY? — R.

For certain rings (e.g. Toric varieties, Hibi rings) the study of these maps boils down to (hard!)
combinatorics

Symbolic and ordinary powers of ideals

We assume, for simplicity:

Global assumptions: R is a normal domain finitely generated over a perfect field k.

Though everything works even if k is not perfect and R is just reduced.
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. Definition: if p € Spec R, we define p(™ =

Remark: these are larger than ordinary powers, i.e. p™ 2 p". Rarely an equality.
Exercise: let R = k[z,vy,2]/(zy — 2°) and p = (z,2). Then p® = 2 p°.
Exercise: Let m € R be a maximal ideal. Then m(™ = m” for all n.

Intuition: p™ is the set of regular functions on Spec R that
(cf. Zariski-Nagata theorem).

Main question: How does p™ relate to p"? More precisely, for which a,b € N do we have
?

In 2000, Ein, Lazarsfeld, and Smith gave a striking answer to this question:

Theorem 1 ([ELSO01]). Let R be a regular ring over an algebraically closed field of character-
istic 0. Then p"™ < p™ for all prime ideals p of height h.

. We will talk about weakening the regularity assumption in this theorem.

Remark: in particular, if dim R = d, we see that p(¥®) < p™ for all p and all n. Because this
number d depends only on the ring R (and not on the primes p) we say these rings have the
Uniform Symbolic Topology Property, or USTP for short.
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Commutative algebra mod p

To prove something like Theorem 1, it actually suffices to work with rings of positive charac-
teristic, using standard “reduction mod p” techniques. For instance, to show that

Clz,vy, 2]
(x3 — by? + 723)

has USTP it suffices to show that its reductions mod p,

R =

R, =

have USTP for all p » 0. In general, there’s a rich theory saying that many properties of a
ring in characteristic 0 can be checked mod p sufficiently large. See [HH99, Chapter 2| for
details.

Exercise: How would one define the reduction of a ring such as

Clz,y, z]

S = ‘
(V223 — my? + £23)

modulo p?

Now let R have characteristic p > 0. Consider the R-module, R'/? defined by RYP =

Key idea: We can learn a lot about R by studying the R-module structure of RY?* for e > 0

Note that RY?* is always a finitely generated module in our setting.

For instance, a theorem of Kunz says that R is regular if and only if R/ is a flat R-module
for some (all) e > 0 [Kun69].

Example from number theory: these modules can be used to detect whether an elliptic curve
in positive characteristic is “ordinary” or “supersingular” [BS15].

Recall: our goal is to weaken the regularity hypothesis in Theorem 1. The crux of Ein—
Lazarsfeld—Smith’s proof! is the following chain of containments:

ptm) < Z Z 0 ((p(hn))l/pe> c Z 2 o ((p(hn))lpe/nj/pe>n .
e>0 ,:R1/P° SR e>0 p:RY/P* >R

The second containment breaks if R is not regular! So we make the sum on the left a little
smaller:

Theorem 2 ([Smol8|). Let R be a normal domain finitely generated over a perfect field k of
characteristic p. Then, for all ideals a of R, we have?

Z Z © (al/pe) c Z Z © (‘-/llpe/nJ/lve)"7

e>0 goe@,ﬁ")(}z) e>0y: RY/P* SR

LAt least, the positive-characteristic analog of their proof. The original proof uses multiplier ideals which are,
fascinatingly, a close analog of these test ideals that works in characteristic 0. Constructing multiplier ideals requires
resolution of singularities, which is not known in positive characteristic.

2For the experts: I'm sacrificing precision for clarity by omitting test elements in the sums below.
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where .@e(n)(R) C Hompg(RY?", R) is the set of maps admitting a lifting to the n-fold tensor
product:

I won’t explain how this works in this talk, but here’s the key take-away I want you to have
from this discussion:

Key idea: This set of maps Qe(n)(R) is a correction term that accounts for our ring R not being
regular. If the correction term is not too bad, then the conclusion of Theorem 1 still holds. [CS18,
Theorem 4.1]

Definition: If 2" (R) is big enough for the argument to work (for some e), then R is called n-
Diagonally F-Regular (n-DFR). If this is true for all n > 0, we say R is Diagonally F-Regular
(DFR).

Aside for experts: Concretely, we need the test ideal of 2™ (R) to be all of R, i.e.
2 2 #(@™) =R
€ <pe@e(n)
where ¢ € R is some element such that R, is regular.

So if R is n-DFR, then for all p of height h.

‘The question becomes: Which rings are DFR?

Facts about Diagonal F-regularity: regular rings are DFR (exercise! Follows from Kunz’s
theorem), Segre products of polynomial rings are DFR [CS18] (“non-effective” USTP was
known prior to this), tensor products of DFR k-algebras are DFR [CS18] (new rings with
USTP!). DFR rings are strongly F-regular. DFR rings are not always Gorenstein and can
have arbitrarily small F-signature.

Exercise (hard): if p is a height 1 prime and torsion element of the divisor class group, then
p™ % p™ for n » 0. So DFR rings have torsion free divisor class groups [CS18].

Diagonal F-regularity of Hibi rings
. A Hibi ring is a kind of (toric) ring associated to a finite partially ordered set.

. Definition Let P = {vy,...,v,} be a poset. The associated Hibi ring, k[P] < k[zo, ..., z,]
is defined as follows: we let P = P U {vy} where vy < v; for all i. Then:

]

k[P] = k[xgo R e

n

. If you know about poset ideals, then we can also write

k [SL’[ ‘ IcPa poset ideal]

K[P] =

Ty — TroJTrng

3
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We usually denote posets by Hasse diagrams: nodes represent elements of P. Bigger elements
are written above smaller elements. Draw an edge between two distinct nodes v; and v; if
there’s no node between them, i.e. if v; < vy < v; implies v, = v; or v, = v;. In this case, we
say v; covers v;.

Some examples/exercises:

v k[ P] =7

Y

5 G

a- ()

Checking whether a Hibi ring is n-DFR boils down to solving a complicated combinatorial
problem:

Theorem 3 ([PST18]). For each i, let r; be the length of the longest chain going up from v;
in P. Then k[P] is n-DFR if and only if there exists some e such that the following holds:
for0<i<dandl<m<n, let a;,, be integers in [0, p® — 1] such that Y. _, ajm =1 (Mmod
p°) for all j. Set N; = |3 _, a;’e’"J. For alli,j, and m, let €;;m = 1 if ajm > iy and let
€jim = 0 otherwise. Then there exist 0;,, € Z with

(a) dim =0 for all m whenever v; is mazimal in P,
(b) jm <
(¢) Dimei Ojm = N;

€jim + 0im for all m whenever v; covers v;, and

Aside for experts: The point is that solving this combinatorial problem is the same as
constructing a lifting (R®")V/?* — R®" of a map RY? — R that sends z = x{°--- 2™ to 1.
Note that z € R and R, is regular.

Using this combinatorial description, we were able to show:

Theorem 4 ([PST18]). If k[P] is DFR, so is k[P u {v'}], where v' covers a single element
of P.



31. Example: Checking if Fs[z, vy, 2] is 3-DFR:

Aim N; 5z‘,m
4 4 3
4 2 1
0 2 1

32. Recall: polynomial rings are DFR. Using theorem 4, which posets (Hasse diagrams) do we
know to correspond to DFR Hibi rings?

33. Recall: tensor products of DFR rings are DFR. Here’s what the tensor product of two Hibi
rings looks like:

34. Exercise: Convince yourself you get isomorphic rings doing the tensor product in either
order!

35. Exercise: What are all the Hibi rings known to be DFR, using Theorem 4 and results about
DFR rings in item 207

36. Definition: A top node in a poset is a node that covers more than one element. They look
like hats in the Hasse diagram.

Theorem 5 ([PST18]). The Hibi ring k[P] is DFR whenever the set of top nodes of P is

37. The converse to this theorem is not known! Here’s the first poset with incomparable top
nodes:

38. We know it’s 2-DFR (in fact, all Hibi rings are 2-DFR). Dylan Johnson has shown it’s 3-DFR.



5 Questions I would like to know the answer to

39. Is the diagonal F-regularity of a toric ring independent of characteristic?

40. TIs 2((R) a good metric for the singularities of R? For instance, if 2°(R) = Hompg(RY?", R)
for all e, does that imply R is regular? This is true for toric Q-Gorenstein R.

41. Do we always have 28" (R) 2 2"V (R)? This is true for toric R.

42. Are rings with large F-signature (say, > 1/2) always DFR? Note that such rings have torsion-
free divisor class groups by Carvajal-Rojas.

43. What kind of USTP statements can we get if the F-signature of 2™ is large but < 1?7
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