Homework \#2 Solutions

Math 2423 Spring 2012

4.1\#8 $f(x)=1+x^{2},-1 \leq x \leq 1$. length of subinterval $=\triangle x=2 / n$. We first find the upper and lower sums by taking $n=3$. For $n=3, \triangle x=2 / 3$. From the figure below (left), upper sum is the sum of the area of rectangles $I, I I$ and $I I I$. Therefore,

$$
\begin{aligned}
\text { upper sum } & =\left[f(-1)+f\left(\frac{1}{3}\right)+f(1)\right] \cdot \Delta x \\
& =\left[2+\frac{10}{9}+2\right] \cdot \frac{2}{3}=\frac{92}{27}
\end{aligned}
$$

The lower sum is (see figure below right),

$$
\begin{aligned}
\text { lower sum } & =\left[f\left(-\frac{1}{3}\right)+f(0)+f\left(\frac{1}{3}\right)\right] \cdot \Delta x \\
& =\left[\frac{10}{9}+1+\frac{10}{9}\right] \cdot \frac{2}{3}=\frac{58}{27} .
\end{aligned}
$$

Next, for $n=4, \triangle x=\frac{2}{4}=\frac{1}{2}$. (You can make a similar diagram for this case). Then

$$
\begin{aligned}
\text { upper sum } & =\left[f(-1)+f\left(-\frac{1}{2}\right)+f\left(\frac{1}{2}\right)+f(1)\right] \cdot \Delta x \\
& =\left[2+\frac{5}{4}+\frac{5}{4}+2\right] \cdot \frac{1}{2}=\frac{13}{4}
\end{aligned}
$$

and

$$
\begin{aligned}
\text { lower sum } & =\left[f\left(-\frac{1}{2}\right)+f(0)+f(0)+f\left(\frac{1}{2}\right)\right] \cdot \Delta x \\
& =\left[\frac{5}{4}+1+1+\frac{5}{4}\right] \cdot \frac{1}{2}=\frac{9}{4} .
\end{aligned}
$$

4.1\#20 Here $f(x)=x^{2}+\sqrt{1+2 x}, 4 \leq x \leq 7$. We compute $\triangle x$ and x_{i} as follows

$$
\triangle x=\frac{b-a}{n}=\frac{7-4}{n}=\frac{3}{n}, \text { and } x_{i}=a+i \triangle x=4+\frac{3 i}{n} .
$$

Using the limit formula for area, we obtain

$$
\begin{aligned}
A & =\lim _{n \longrightarrow \infty} R_{n}=\lim _{n \longrightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \triangle x \\
& =\lim _{n \longrightarrow \infty} \sum_{i=1}^{n} f\left(4+\frac{3 i}{n}\right) \frac{3}{n} \\
& =\lim _{n \longrightarrow \infty} \sum_{i=1}^{n}\left[\left(4+\frac{3 i}{n}\right)^{2}+\sqrt{1+2\left(4+\frac{3 i}{n}\right)}\right] \cdot \frac{3}{n}
\end{aligned}
$$

4.2\#6 Here $n=6$ and $\triangle x=\frac{b-a}{2}=\frac{4-(-2)}{6}=\frac{6}{6}=1$.
(a) We have to find R_{6}. Right end-points are $-1,0,1,2,3,4$. Therefore

$$
\begin{aligned}
\int_{-2}^{4} g(x) d x & \equiv R_{6}=[g(-1)+g(0)+g(1)+g(2)+g(3)+g(4)] \Delta x \\
& =\left[-\frac{3}{2}+0+\frac{3}{2}+\frac{1}{2}+(-1)+\frac{1}{2}\right] \cdot 1 \\
& =0
\end{aligned}
$$

(b) We have to find L_{6}. Left end-points are $-2,-1,0,1,2,3$. Therefore

$$
\begin{aligned}
\int_{-2}^{4} g(x) d x & \equiv L_{6}=[g(-2)+g(-1)+g(0)+g(1)+g(2)+g(3)] \triangle x \\
& =\left[0+\left(-\frac{3}{2}\right)+0+\frac{3}{2}+\frac{1}{2}+(-1)\right] \cdot 1 \\
& =-\frac{1}{2}
\end{aligned}
$$

(c) We have to find M_{6}. Mid points are $-3 / 2,-1 / 2,1 / 2,3 / 2,5 / 2,7 / 2$. Therefore

$$
\begin{aligned}
\int_{-2}^{4} g(x) d x & \equiv M_{6}=\left[g\left(-\frac{3}{2}\right)+g\left(-\frac{1}{2}\right)+g\left(\frac{1}{2}\right)+g\left(\frac{3}{2}\right)+g\left(\frac{5}{2}\right)+g\left(\frac{7}{2}\right)\right] \triangle x \\
& =\left[-1+(-1)+1+1+0+\left(-\frac{1}{2}\right)\right] \cdot 1 \\
& =-\frac{1}{2}
\end{aligned}
$$

4.2\#18 We have given the limit

$$
\lim _{n \longrightarrow \infty} \sum_{i=1}^{n} \frac{\cos x_{i}}{x_{i}} \triangle x \text { on }[\pi, 2 \pi] .
$$

and we have to find the definite integral corresponding to this expression. The idea is to compare this expression with the definition of definite integral,

$$
\int_{a}^{b} f(x) d x=\lim _{n \longrightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \triangle x
$$

In our case, a is π, and b is 2π. Next we have to find $f(x)$. From the given expression, we have $f\left(x_{i}\right)=\frac{\cos x_{i}}{x_{i}}$. This gives $f(x)=\frac{\cos x}{x}$. Therefore the definite integral for the given expression is

$$
\int_{\pi}^{2 \pi} \frac{\cos x}{x} d x
$$

4.2\#34 (a) $\int_{0}^{2} g(x) d x$ is the area of triangle. This area of triangle is the half of the area of rectangle of height 4 and base 2. Therefore

$$
\begin{aligned}
\int_{0}^{2} g(x) d x & =a \text { rea of triangle } \\
& =\frac{1}{2} \times a \text { rea of rectangle } \\
& =\frac{1}{2} \times(4 \times 2)=4
\end{aligned}
$$

(b) $\int_{2}^{6} g(x) d x$ is the negative of the area of semicircle. The area of semicircle is the half of the area of circle. From the given graph, radius of semicircle $(r)=2$. Therefore

$$
\begin{aligned}
\int_{2}^{6} g(x) d x & =n \text { egative of the area of semicircle } \\
& =-\frac{1}{2} \times a \text { rea of circle } \\
& =-\frac{1}{2} \times \pi r^{2} \\
& =-\frac{1}{2} \times \pi(2)^{2}=-2 \pi
\end{aligned}
$$

(c) $\int_{6}^{7} g(x) d x$ is the area of triangle. By the similar method what we did in (a), we have

$$
\begin{aligned}
\int_{6}^{7} g(x) d x & =a \text { rea of triangle } \\
& =\frac{1}{2} \times a \text { rea of rectangle } \\
& =\frac{1}{2} \times(1 \times 1)=\frac{1}{2}
\end{aligned}
$$

Finally, total area is given by

$$
\begin{aligned}
\int_{0}^{7} g(x) d x & =\left(\int_{0}^{2}+\int_{2}^{6}+\int_{6}^{7}\right) g(x) d x \\
& =\int_{0}^{2} g(x) d x+\int_{2}^{6} g(x) d x+\int_{6}^{7} g(x) d x \\
& =4-2 \pi+\frac{1}{2} \\
& =4-2 \pi+0.5 \\
& =4.5-2 \pi
\end{aligned}
$$

