Hw \#5 Solutions

5.2\#2. See Figure A at the bottom of the page. The volume is given by

$$
\begin{aligned}
V & =\int_{-1}^{1} A(x) d x \\
& =\int_{-1}^{1} \pi\left(1-x^{2}\right)^{2} d x \\
& =2 \int_{0}^{1} \pi\left(1-2 x^{2}+x^{4}\right) d x \quad\left(\because \text { because }\left(1-x^{2}\right)^{2} \text { even function }\right) \\
& =2 \pi\left|x-2 \cdot \frac{x^{3}}{3}+\frac{x^{5}}{5}\right|_{0}^{1} d y \\
& =\frac{16 \pi}{15} .
\end{aligned}
$$

5.2\#6. See Figure B at the bottom of the page. The volume is given by

$$
\begin{aligned}
V & =\int_{0}^{1} A(y) d y \\
& =\int_{0}^{1} \pi\left(y-y^{2}\right)^{2} d y \\
& =\int_{0}^{1}\left(y^{2}-2 y^{3}+y^{4}\right) d y \\
& =\pi\left|\frac{y^{3}}{3}-2 \cdot \frac{y^{4}}{4}+\frac{y^{5}}{5}\right|_{0}^{1} d y \\
& =\frac{\pi}{30}
\end{aligned}
$$

5.2\#10. See Figure C at the bottom of the page. In this case, we have washer with inner radius $x=2 \sqrt{y}$ (this is obtained by solving given function in terms of x) and outer radius 2 . The volume is given by

$$
\begin{aligned}
V & =\int_{0}^{1} \pi\left[(\text { (Outer radius })^{2}-(\text { Inner radius })^{2}\right] d y \\
& =\pi \int_{0}^{1}\left[2^{2}-(2 \sqrt{y})^{2}\right) d y \\
& =\pi \int_{0}^{1}(4-4 y) d y=4 \pi \int_{0}^{1}(1-y) d y \\
& =4 \pi\left|y-\frac{y^{2}}{2}\right|_{0}^{1} d y \\
& =2 \pi
\end{aligned}
$$

5.2\#18. See Figure D at the bottom of the page. The formula to find volume is

$$
V=\int_{c}^{d} A(y) d y
$$

The limits for y are from $y=0$ to $y=4$. For $0 \leq y \leq 2$, cross section is annulus with inner radius $2-1=1$ and outer radius $4-1=3$, and for $2 \leq y \leq 4$, cross section is annulus with inner radius $y-1$ and outer radius $4-1=3$. Therefore, volume is given by

$$
\begin{aligned}
V & =\int_{0}^{2} \pi\left[(\text { Outer })^{2}-(\text { Inner })^{2}\right] d y+\int_{2}^{4} \pi\left[(\text { Outer })^{2}-(\text { Inner })^{2}\right] d y \\
& =\int_{0}^{2} \pi\left[3^{2}-1^{2}\right] d y+\int_{2}^{4} \pi\left[3^{2}-(y-1)^{2}\right] d y \\
& =\pi \int_{0}^{2}[9-1] d y+\pi \int_{2}^{4}\left[9-\left(y^{2}-2 y+1\right)\right] d y \\
& =8 \pi \int_{0}^{2} d y+\pi \int_{2}^{4}\left[8-y^{2}+2 y\right] d y \\
& =8 \pi[y]_{0}^{2}+\pi\left|8 y-\frac{y^{3}}{3}+2 \frac{y^{2}}{2}\right|_{2}^{4}=\frac{76 \pi}{3} .
\end{aligned}
$$

5.2\#20. $O C$ is the line $x=0$. The volume rotating \mathcal{R}_{1} about $O C$ is given by

$$
\begin{aligned}
V & =\int_{0}^{1} A(y) d y=\int_{0}^{1} \pi(1-y)^{2} d y \\
& =\pi\left|y-\frac{y^{2}}{2}\right|_{0}^{1}=\frac{2 \pi}{3} .
\end{aligned}
$$

Figures :

