Hw \# 8 Solutions

The following rules are needed to solve homework from section 6.3 and 6.4.
(i) $\log _{a} x^{k}=k \log _{a} x$
(ii) $\log _{a} x y=\log _{a} x+\log _{a} y$
(iii) $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$
(iv) $\log _{a} a^{x}=x$. In particular, $\ln e^{x}=x$ for all $x \in \mathbb{R}$ and $e^{\ln x}=x$ for $x>0$.
(iv) $\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a, \quad \frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}, \quad \frac{d}{d x}(\ln |x|)=\frac{1}{x}, \quad \int \frac{1}{x} d x=\ln |x|+C$.
$6.3 \# 7$ (a) Using rule (iii) first and then rule (ii), we obtain

$$
\begin{aligned}
\log _{2} 6-\log _{2} 15+\log _{2} 20 & =\log _{2}\left(\frac{6}{15}\right)+\log _{2} 20 \\
& =\log _{2}\left(\frac{6}{15} \cdot 20\right) \\
& =\log _{2} 8=3
\end{aligned}
$$

(b) Using rule (iii), we obtain

$$
\begin{aligned}
\log _{3} 100-\log _{3} 18-\log _{3} 50 & =\log _{3}\left(\frac{100}{18}\right)-\log _{3} 50 \\
& =\log _{3}\left(\frac{100}{18} .50\right) \\
& =\log _{3}\left(\frac{1}{9}\right) \\
& =\log _{3}\left(3^{-2}\right) \\
& \left.=-2 \log _{3} 3 \quad \text { (using rule }(i)\right) \\
& =-2
\end{aligned}
$$

$6.3 \# 28$ (a)

$$
\begin{aligned}
\ln \left(x^{2}-1\right) & =3 \Longrightarrow x^{2}-1=e^{3} \\
& \Longrightarrow x^{2}=e^{3}+1 \\
& \Longrightarrow x= \pm \sqrt{e^{3}+1} .
\end{aligned}
$$

(b) Put $y=e^{x}$, then $e^{2 x}-3 e^{x}+2=0$ reduces to

$$
\begin{aligned}
y^{2}-3 y+2 & =0 \\
(y-1)(y-2) & =0 \\
\left(e^{x}-1\right)\left(e^{x}-2\right) & =0
\end{aligned}
$$

$e^{x}-1=0$ gives $e^{x}=1$ and hence $x=\ln 1=0$. Next, $e^{x}-2=0$ gives $e^{x}=2$ and hence $x=\ln 2$. Therefore, $x=0$ or $\ln 2$.
6.4\#8 Using Chain Rule, we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x e^{x} \ln 5} \frac{d}{d x}\left(x e^{x}\right) \\
& =\frac{1}{x e^{x} \ln 5}\left(e^{x}+x e^{x}\right) \\
& =\frac{e^{x}(1+x)}{x e^{x} \ln 5}=\frac{1+x}{x \ln 5}
\end{aligned}
$$

6.4\#52 Taking \ln on both sides, we obtain

$$
\begin{aligned}
& \ln y=\ln (\sin x)^{\ln x} \\
& \ln y=\ln x \ln \sin x \quad \text { (using rule (i)) }
\end{aligned}
$$

Differentiating both sides with respect to x (using Chain Rule and product rule), we get

$$
\frac{1}{y} y^{\prime}=\ln x \cdot \frac{1}{\sin x} \cdot \cos x+\ln \sin x \cdot \frac{1}{x}
$$

Solving for y^{\prime}, we get

$$
\begin{aligned}
y^{\prime} & =y\left(\ln x \cot x+\frac{\ln \sin x}{x}\right) \\
& =(\sin x)^{\ln x}\left(\ln x \cot x+\frac{\ln \sin x}{x}\right)
\end{aligned}
$$

6.4\#72 Put $u=5 x+1$. Then $d u=5 d x$. New limits are $u=1$ and $u=16$. Thus

$$
\begin{aligned}
\int_{0}^{3} \frac{d x}{5 x+1} & =\int_{1}^{16} \frac{1}{u} \frac{d u}{5}=\frac{1}{5} \int_{1}^{16} \frac{d u}{u} \\
& =\left.\frac{1}{5} \ln |u|\right|_{1} ^{16}=\frac{1}{5}[\ln 16-\ln 1] \\
& =\frac{1}{5} \ln 16
\end{aligned}
$$

