Final Exam Math 2423-010 December 18, 2008

Problem 1:

Problem 4:

Problem 2: Problem 5:

Problem 3: Problem 6:

Total:

1(a) A honeybee population starts at 100 and increases at a rate of n'(t) bees per week. What does $100 + \int_0^{18} n'(t) dt$ represent?

(b) Give a number x such that $\sin^{-1}(\sin(x)) = x$.

(c) Give a number y such that $\sin^{-1}(\sin(y)) \neq y$.

(d) Find the average value of
$$\frac{(\ln x)^2}{x}$$
 over the interval $[1, e^3]$.

2(a) Does $\int_0^\infty \frac{x}{x^3+1} dx$ converge or diverge? Use a comparison to explain why.

(b) Explain why $\int_{3}^{5} \frac{1}{\sqrt{5-x}} dx$ is improper, and evaluate it.

Page 3

3(a) Find the area of the region bounded by the curves $y = e^x$, $y = \sin x$, x = 0, and $x = \pi/2$.

(b) Evaluate $\int_0^2 y^2 \sqrt{1+y^3} \, dy$.

Page 4

4(a) Use a trigonometric substitution to find $\int \frac{1}{x^2\sqrt{x^2+4}} dx$.

(b) Find
$$\lim_{x \to 0} \frac{x}{\tan^{-1}(4x)}$$
.

Page 5 $\,$

5(a) Write out the appropriate form of the partial fraction decomposition. Do *not* determine the numerical values of the coefficients. [Hint: be careful.]

(i)
$$\frac{x+5}{(x^2+4)(x-2)^2}$$

(ii)
$$\frac{x^2+1}{(x+1)(x^2-1)(x+2)}$$

(b) Evaluate
$$\int_0^2 \frac{x^3}{x-2} dx$$
.

Page 6

6. Let R be the region bounded by $y = \sin x$, $x = 2\pi$, $x = 3\pi$, and y = 0. Use shells to find the volume of the solid obtained by rotating R about the y-axis. [Draw pictures. What is the area of a typical shell?]

 $\begin{aligned} \sin^2 x + \cos^2 x &= 1 \\ 1 + \tan^2 x &= \sec^2 x \\ \sin^2 x &= \frac{1}{2}(1 - \cos(2x)) \\ \cos^2 x &= \frac{1}{2}(1 + \cos(2x)) \\ \sin(2x) &= 2\sin x \cos x \\ \cos(2x) &= \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x \\ \sin A \cos B &= \frac{1}{2}(\sin(A - B) + \sin(A + B)) \\ \sin A \sin B &= \frac{1}{2}(\cos(A - B) - \cos(A + B)) \\ \cos A \cos B &= \frac{1}{2}(\cos(A - B) + \cos(A + B)) \end{aligned}$

Extra Credit Use logarithmic differentiation to find $\frac{dy}{dx}$ when $y = x^{(x^x)}$.