Final Exam
Math 2423-010
December 18, 2008

Problem 1:
Problem 2:
Problem 3:
Problem 6:

Total:
$\mathbf{1 (a)}$ A honeybee population starts at 100 and increases at a rate of $n^{\prime}(t)$ bees per week. What does $100+\int_{0}^{18} n^{\prime}(t) d t$ represent?
(b) Give a number x such that $\sin ^{-1}(\sin (x))=x$.
(c) Give a number y such that $\sin ^{-1}(\sin (y)) \neq y$.
(d) Find the average value of $\frac{(\ln x)^{2}}{x}$ over the interval $\left[1, e^{3}\right]$.

Page 2
2(a) Does $\int_{0}^{\infty} \frac{x}{x^{3}+1} d x$ converge or diverge? Use a comparison to explain why.
(b) Explain why $\int_{3}^{5} \frac{1}{\sqrt{5-x}} d x$ is improper, and evaluate it.

Page 3
3(a) Find the area of the region bounded by the curves $y=e^{x}, y=\sin x, x=0$, and $x=\pi / 2$.
(b) Evaluate $\int_{0}^{2} y^{2} \sqrt{1+y^{3}} d y$.

Page 4
4(a) Use a trigonometric substitution to find $\int \frac{1}{x^{2} \sqrt{x^{2}+4}} d x$.
(b) Find $\lim _{x \rightarrow 0} \frac{x}{\tan ^{-1}(4 x)}$.

5(a) Write out the appropriate form of the partial fraction decomposition. Do not determine the numerical values of the coefficients. [Hint: be careful.]
(i) $\frac{x+5}{\left(x^{2}+4\right)(x-2)^{2}}$
(ii) $\frac{x^{2}+1}{(x+1)\left(x^{2}-1\right)(x+2)}$
(b) Evaluate $\int_{0}^{2} \frac{x^{3}}{x-2} d x$.

Page 6
6. Let R be the region bounded by $y=\sin x, x=2 \pi, x=3 \pi$, and $y=0$. Use shells to find the volume of the solid obtained by rotating R about the y-axis. [Draw pictures. What is the area of a typical shell?]

Page 7: Some identities

$$
\begin{aligned}
& \sin ^{2} x+\cos ^{2} x=1 \\
& 1+\tan ^{2} x=\sec ^{2} x \\
& \sin ^{2} x=\frac{1}{2}(1-\cos (2 x)) \\
& \cos ^{2} x=\frac{1}{2}(1+\cos (2 x)) \\
& \sin (2 x)=2 \sin x \cos x \\
& \cos (2 x)=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x \\
& \sin A \cos B=\frac{1}{2}(\sin (A-B)+\sin (A+B)) \\
& \sin A \sin B=\frac{1}{2}(\cos (A-B)-\cos (A+B)) \\
& \cos A \cos B=\frac{1}{2}(\cos (A-B)+\cos (A+B))
\end{aligned}
$$

Extra Credit Use logarithmic differentiation to find $\frac{d y}{d x}$ when $y=x^{\left(x^{x}\right)}$.

