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1(a) Let g(z) = / f(¢t) dt, where f is the function whose graph is shown.

0
(i) Evaluate g(z) for z = 1, 3,5, 6.
(ii) On what intervals is g increasing? Decreasing?
(iii) Where does the maximum of g(x) occur?

(iv) What is g'(4)?

/'\/\(‘re'af.?
0L ¥ &t
EX AT

o

(i‘\litr> Maximonr ocetrs &t (Y=
o o

1(b) Put the following quantities into order, from smallest to largest. Explain your reasoning.

/Osf(:v)dx /Oaf(x)dm /sz(x)da: Asf(x)dg;
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2. Consider the region R enclosed by the curves y = z(5 — z) and y = z.
(a) Draw the region carefully. = .
(b) Find the area of this region.
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(c) Consider the solid of revolution obtained by rotating the region R about the z-axis. Write
down a definite integral which represents the volume of this solid.
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3. Evaluate the following:

(a)/t\/l——t?dt [y = -4

Jerr@ay = (4w du

(b) /Oﬂ/ssec(ze)tan(ze)de (/‘ 4 nE 26
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4(a) If 7(t) is the rate at which water flows into a reservoir, in gallons per day, what does foloo r(t)dt
represent? Be as specific as you can.
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(b) Write down an antiderivative F(z) of f(z) = sin(e~%) with the property that F(1) = 0.
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(c) Write down a Riemann sum for f(z) = cos(z) tan(z) over the interval 1 < z < 5 for n = 4,
using right endpoints. (Either use sigma notation, or write the sum out completely. )

{ B y Ny

Cag[m) ‘écu/\[?a) + o8 /3)']%4/\/9 + Coi/'—() 7LoWk/‘U
Feas(§) fan(s)




