Homework 2 Solutions
Discrete Math, Spring 2010

Section 1.5

6. Define the following propositions:

R : It rains.
F : It is foggy.
S: The sailing race will be held.
L : The lifesaving demonstration will go on.
T: The trophy will be awarded.
Now we have:

1. $(\neg R \vee \neg F) \rightarrow(S \wedge L)$
(premise)
2. $S \rightarrow T$
(premise)
3. $\neg T$
(premise)
4. $\neg S$
5. $\neg S \vee \neg L$
(modus tollens on 2,3)
(addition on 4)
6. $\neg(S \wedge L)$
(deMorgan's law on 5)
7. $\neg(\neg R \vee \neg F)$
8. $\neg \neg R \wedge \neg \neg F$
(modus tollens on 1,6)
9. $R \wedge F$
10. R
11. (a) Define the statements:
$C(x): x$ is a student in this class.
$R(x): x$ owns a red convertible.
$T(x): x$ has gotten a speeding ticket.
The argument is:
12. C (Linda) $\wedge R($ Linda \quad (premise)
13. $\forall x(R(x) \rightarrow T(x)) \quad$ (premise)
14. R (Linda) $\rightarrow T$ (Linda) (universal instantiation on 2)
15. $R($ Linda $)$
16. T (Linda)
(simplification on 1)
17. C (Linda)
(modus ponens on 3,4)
18. $C($ Linda $) \wedge T($ Linda $)$
(simplification on 1)
(conjunction of 5,6)
19. $\exists x(C(x) \wedge T(x))$
(existential generalization on 7)
(b) Define the statements:
$D(x): x$ has taken a course in discrete mathematics.
$A(x): x$ can take a course in algorithms.
Let the domain for x be the five roomates Melissa, Aaron, Ralph, Veneesha, and Keeshawn.

The argument is:

1. $\forall x D(x) \quad$ (premise)
2. $\forall x(D(x) \rightarrow A(x)) \quad$ (premise)
3. $D(c)$ for an arbitrary roommate c (universal instantiation on 1)
4. $D(c) \rightarrow A(c)$
5. $A(c)$
(universal instantiation on 3)
(modus ponens on 3,4)
6. $\forall x A(x)$ since c was arbitrary
(universal generalization on 5)
(c) Define the statements:
$S(x)$: John Sayles produced the movie x.
$W(x)$: The movie x is wonderful.
$C(x): x$ is a movie about coal miners.
The domain is all movies. Now the argument is:
7. $\forall x(S(x) \rightarrow W(x))$
8. $\exists x(S(x) \wedge C(x))$
(premise)
9. $S(c) \wedge C(c)$ (existential instantiation on 2)
10. $S(c) \rightarrow W(c)$
11. $S(c)$
12. $W(c)$
(universal instantiation on 1)
(simplification of 3)
13. $C(c)$
(modus ponens on 4,5)
(simplification of 3)
(conjunction of 6,7)
14. $W(c) \wedge C(c)$
15. $\exists x(W(x) \wedge C(x))$
(existential generalization on 8)
(d) Define the statements:
$C(x): x$ is in this class.
$F(x): x$ has been to France.
$L(x): x$ has visited the Louvre.
Now the argument is:
16. $\exists x(C(x) \wedge F(x))$
(premise)
17. $\forall x(F(x) \rightarrow L(x))$ (premise)
18. $C(c) \wedge F(c)$
19. $F(c) \rightarrow L(c)$
20. $F(c)$
21. $L(c)$
22. $C(c)$
(premise)
(premise)
(existential instantiation on 1)
(universal instantiation on 2)
(simplification of 3)
(modus ponens on 4, 5)
(simplification of 3)
23. $C(c) \wedge L(c)$
(conjunction of 6,7)
24. $\exists x(C(x) \wedge L(x))$
(existential generalization on 8)
25. (a) This is correct; it is basically modus tollens.
(b) Incorrect. Issac's car could be fun to drive while also not being a convertible.
(c) Incorrect. Even if Quincy likes all action movies, he may also like some other movies too. (I don't know whether Eight Men Out is an action movie, but this is irrelevant for the argument as it is given.)
(d) This is correct; it is basically modus ponens.
26. (a) This argument is invalid. The two premises have the form $\forall x(p(x) \rightarrow$ $q(x))$ and $q(a)$. It does not follow that $p(a)$ is true.
(b) This argument is valid. It is a case of universal instantiation together with modus ponens.
27. The problem is with lines 3 and 5 , which do not follow from 2 as claimed. Also, line 7 is not formed correctly, and makes no sense.
28. One possible argument is:
29. $\forall x(P(x) \vee Q(x))$
(premise)
30. $\forall x((\neg P(x) \wedge Q(x)) \rightarrow R(x))$
(premise)
31. $P(c) \vee Q(c)$ for arbitrary c
(universal instantiation on 1)
32. $(\neg P(c) \wedge Q(c)) \rightarrow R(c)$
(universal instantiation on 2)
33. $\neg(\neg P(c) \wedge Q(c)) \vee R(c)$
(equivalent to 4)
34. $(\neg \neg P(c) \vee \neg Q(c)) \vee R(c)$ (deMorgan's law on 5)
35. $P(c) \vee \neg Q(c) \vee R(c)$ (double negative in 6)
36. $(P(c) \vee R(c)) \vee \neg Q(c)$
37. $P(c) \vee(P(c) \vee R(c))$
(equivalent to 7)
38. $P(c) \vee R(c)$
(resolution on 3, 8)
39. $\neg R(c) \rightarrow P(c)$
(equivalent to 9)
40. $\forall x(\neg R(x) \rightarrow P(x))$ since c was arbitrary (universal gen. on 11)

Section 1.6

6. Let a and b be odd numbers. Then there exist integers k, l such that $a=2 k+1$ and $b=2 l+1$. We now have

$$
a b=(2 k+1)(2 l+1)=4 k l+2 l+2 k+1=2(2 k l+l+k)+1,
$$

which is the required form of an odd number. That is, we have shown that $a b=2 m+1$ for an integer m (namely, $m=2 k l+l+k$). Hence $a b$ is odd.
8. We are told that n is a perfect square, and want to prove that $n+2$ is not a perfect square. We will assume that $n+2$ is a perfect square and derive a contradiction; this will prove that our assumption is false (and the theorem we want is true).

So we are assuming that n and $n+2$ are both perfect squares. This means that there are positive integers a, b such that $a^{2}=n$ and $b^{2}=n+2$. Our intuition here is that these numbers are too close together to both be squares. Let's make this precise.

Since $n<n+2$, taking square roots we get $a<b$. Now consider the number $(a+1)^{2}=a^{2}+2 a+1$. Since a is a positive integer, $a \geq 1$, and so $(a+1)^{2} \geq a^{2}+2+1=(n+2)+1=b^{2}+1$. So we now have

$$
a^{2}<b^{2}<(a+1)^{2}
$$

Taking square roots we get $a<b<a+1$. But this is impossible if a and b are both integers. This contradiction shows that n and $n+2$ cannot both be squares.
15. We are proving that if $x+y \geq 2$ then $x \geq 1$ or $y \geq 1$.

Suppose the conclusion is false. Then, $x<1$ and $y<1$. Adding these, we get $x+y<1+1=2$, and therefore the hypothesis " $x+y \geq 2$ " is false. This proves the theorem.

