Homework 2 Solutions Discrete Math, Spring 2010

Section 1.5

6. Define the following propositions:

R: It rains.

F: It is foggy.

- S: The sailing race will be held.
- L: The lifesaving demonstration will go on.
- T: The trophy will be awarded.

Now we have:

1. $(\neg R \lor \neg F) \to (S \land L)$	(premise)
2. $S \rightarrow T$	(premise)
3. $\neg T$	(premise)
4. $\neg S$	(modus tollens on $2, 3$)
5. $\neg S \lor \neg L$	(addition on 4)
6. $\neg(S \land L)$	(deMorgan's law on 5)
7. $\neg(\neg R \lor \neg F)$	(modus tollens on $1, 6$)
8. $\neg \neg R \land \neg \neg F$	(deMorgan's law on 7)
9. $R \wedge F$	(double negation in $8)$
10. <i>R</i>	(simplification on 9)

14. (a) Define the statements:

C(x): x is a student in this class. R(x): x owns a red convertible. T(x): x has gotten a speeding ticket.

The argument is:

1. $C(\text{Linda}) \wedge R(\text{Linda})$	(premise)
2. $\forall x(R(x) \to T(x))$	(premise)
3. $R(\text{Linda}) \rightarrow T(\text{Linda})$	(universal instantiation on 2)
4. $R(Linda)$	(simplification on 1)
5. $T(Linda)$	(modus ponens on $3, 4$)
6. $C(Linda)$	(simplification on 1)
7. $C(\text{Linda}) \wedge T(\text{Linda})$	(conjunction of 5, 6 $)$
8. $\exists x (C(x) \land T(x))$	(existential generalization on 7)

(b) Define the statements:

D(x): x has taken a course in discrete mathematics.

A(x): x can take a course in algorithms.

Let the domain for x be the five roomates Melissa, Aaron, Ralph, Veneesha, and Keeshawn.

The argument is:

1. $\forall x D(x)$	(premise)
2. $\forall x(D(x) \to A(x))$	(premise)
3. $D(c)$ for an arbitrary roommate c	(universal instantiation on 1)
4. $D(c) \rightarrow A(c)$	(universal instantiation on 3)
5. $A(c)$	(modus ponens on $3, 4$)
6. $\forall x A(x)$ since c was arbitrary	(universal generalization on 5)

(c) Define the statements:

S(x): John Sayles produced the movie x.

W(x): The movie x is wonderful.

C(x): x is a movie about coal miners.

The domain is all movies. Now the argument is:

1. $\forall x(S(x) \to W(x))$	(premise)
2. $\exists x(S(x) \land C(x))$	(premise)
3. $S(c) \wedge C(c)$	(existential instantiation on 2)
4. $S(c) \to W(c)$	(universal instantiation on $1)$
5. $S(c)$	(simplification of 3)
6. $W(c)$	(modus ponens on 4, 5)
7. $C(c)$	(simplification of 3)
8. $W(c) \wedge C(c)$	(conjunction of $6, 7)$
9. $\exists x(W(x) \land C(x))$	(existential generalization on 8)

(d) Define the statements:

C(x): x is in this class. F(x): x has been to France. L(x): x has visited the Louvre. Now the argument is:

- 1. $\exists x(C(x) \land F(x))$ 2. $\forall x(F(x) \rightarrow L(x))$ 3. $C(c) \land F(c)$ 4. $F(c) \rightarrow L(c)$ 5. F(c)6. L(c)7. C(c)
- 7. C(c)

(premise) (premise) (existential instantiation on 1) (universal instantiation on 2) (simplification of 3) (modus ponens on 4, 5) (simplification of 3)

8.	$C(c) \wedge L(c)$	(conjunction of 6, 7 $)$
9.	$\exists x (C(x) \land L(x))$	(existential generalization on 8)

16. (a) This is correct; it is basically modus tollens.

(b) Incorrect. Issac's car could be fun to drive while also not being a convertible.

(c) Incorrect. Even if Quincy likes all action movies, he may also like some other movies too. (I don't know whether *Eight Men Out* is an action movie, but this is irrelevant for the argument as it is given.)

(d) This is correct; it is basically modus ponens.

20. (a) This argument is invalid. The two premises have the form $\forall x(p(x) \rightarrow q(x))$ and q(a). It does not follow that p(a) is true.

(b) This argument is valid. It is a case of universal instantiation together with modus ponens.

24. The problem is with lines 3 and 5, which do not follow from 2 as claimed. Also, line 7 is not formed correctly, and makes no sense.

28. One possible argument is:

1. $\forall x(P(x) \lor Q(x))$	(premise)
2. $\forall x((\neg P(x) \land Q(x)) \to R(x))$	(premise)
3. $P(c) \lor Q(c)$ for arbitrary c	(universal instantiation on 1)
4. $(\neg P(c) \land Q(c)) \to R(c)$	(universal instantiation on 2)
5. $\neg(\neg P(c) \land Q(c)) \lor R(c)$	(equivalent to $4)$
6. $(\neg \neg P(c) \lor \neg Q(c)) \lor R(c)$	(deMorgan's law on 5)
7. $P(c) \lor \neg Q(c) \lor R(c)$	(double negative in $6)$
8. $(P(c) \lor R(c)) \lor \neg Q(c)$	(equivalent to $7)$
9. $P(c) \lor (P(c) \lor R(c))$	(resolution on 3, 8)
10. $P(c) \lor R(c)$	(equivalent to $9)$
11. $\neg R(c) \rightarrow P(c)$	(equivalent to $10)$
12. $\forall x(\neg R(x) \rightarrow P(x))$ since c was arbitrated as $\forall x(\neg R(x) \rightarrow P(x))$	ary (universal gen. on 11)

Section 1.6

6. Let a and b be odd numbers. Then there exist integers k, l such that a = 2k + 1 and b = 2l + 1. We now have

$$ab = (2k+1)(2l+1) = 4kl + 2l + 2k + 1 = 2(2kl + l + k) + 1,$$

which is the required form of an odd number. That is, we have shown that ab = 2m + 1 for an integer m (namely, m = 2kl + l + k). Hence ab is odd.

8. We are told that n is a perfect square, and want to prove that n + 2 is not a perfect square. We will assume that n + 2 is a perfect square and derive a contradiction; this will prove that our assumption is false (and the theorem we want is true).

So we are assuming that n and n + 2 are both perfect squares. This means that there are positive integers a, b such that $a^2 = n$ and $b^2 = n + 2$. Our intuition here is that these numbers are too close together to both be squares. Let's make this precise.

Since n < n + 2, taking square roots we get a < b. Now consider the number $(a + 1)^2 = a^2 + 2a + 1$. Since a is a positive integer, $a \ge 1$, and so $(a + 1)^2 \ge a^2 + 2 + 1 = (n + 2) + 1 = b^2 + 1$. So we now have

$$a^2 < b^2 < (a+1)^2$$
.

Taking square roots we get a < b < a + 1. But this is impossible if a and b are both integers. This contradiction shows that n and n + 2 cannot both be squares.

15. We are proving that if $x + y \ge 2$ then $x \ge 1$ or $y \ge 1$.

Suppose the conclusion is false. Then, x < 1 and y < 1. Adding these, we get x + y < 1 + 1 = 2, and therefore the hypothesis " $x + y \ge 2$ " is false. This proves the theorem.