Exam III Math 2513-001 April 27, 2009

Problem 1:

Problem 2:

Problem 4:

Problem 3:

Total:

1. Use induction to prove that $n! < n^n$ for every integer $n \ge 2$: What is the basis step? What is the inductive hypothesis? What do you need to prove in the inductive step? Complete these steps, and the proof.

2(a) Use the Euclidean Algorithm to find gcd(9888,6060).

2(b) Find the greatest common divisor and least common multiple of the numbers $3^7 5^3 7^3$ and $2^{11} 3^5 5^9$.

2(c) Explain why $ab = gcd(a, b) \cdot lcm(a, b)$ for all positive integers a, b.

3(a) Give the definition for an infinite set S to be *countable*.

Then, suppose that S is countable and F is a finite set with n elements, disjoint from S. Prove that $F \cup S$ is countable.

3(b) What is the coefficient of x^9 in $(2-x)^{19}$?

4. How many stringss of six lowercase letters from the English alphabet contain the letter a?the letters a and b?the letters a and b in consecutive positions with a preceding b, with all the letters distinct?