Final Exam Math 2513-001 May 14, 2009

Problem 1:	Problem 4:
Problem 2:	Problem 5:
Problem 3:	Problem 6:

Total:

1(a) Determine whether 97 is prime, as efficiently as you can. State clearly any theorems that you use, and show your work.

- (b) Determine the cardinality of each of these sets, with brief explanations:
 - (i) the set of all finite strings of 0s and 1s
 - (ii) the set of all functions from $\{1, 2, 3\}$ to $\{a, b, c, d\}$
 - (iii) the set of all irrational numbers

2(a) How many positive integers are there whose distinct prime factors are exactly 2, 3, 5, and 7, having 10 prime factors? (eg. $2 \cdot 3^4 \cdot 5^3 \cdot 7^2$)

2(b) Write the number 1023 in base 4. (Show your work.)

3. On a certain island, everyone is a knight or a knave. Knights always tell the truth and knaves always lie. A says "B is a knave." B says "the two of us are of opposite types." Let p be the proposition "A is a knight" and let q be the proposition "B is a knight."

(a) Write down two propositions (involving p and q) which express the information you have learned from the statements of A and B.

(b) Use truth tables for your propositions to determine what A and B are.

4(a) Show, by a combinatorial argument, that $\binom{2n}{2} = 2\binom{n}{2} + n^2$ for any $n \in \mathbb{Z}_+$.

(b) Show that
$$\sum_{k=0}^{n} 2^k \binom{n}{k} = 3^n$$
.

- **5.** Let $f: A \to B$ and $g: B \to C$ be functions.
 - (a) Define what it means for f to be *injective (one-to-one)*, surjective (onto), and bijective.
 - (b) Prove that if $g \circ f$ is surjective then so is g.
 - (c) If $g \circ f$ is a bijection, is f a bijection? Explain why or why not.

- **6.** Recall from the homework that if p is prime and 0 < k < p then p divides $\binom{p}{k}$.
 - (a) Give the precise definition of the statement " $\ell \equiv m \pmod{n}$."
 - (b) Using the fact above, prove that for any positive integers a and b and any prime p,

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$
.

Extra Page