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1. Let X be path connected, locally path connected, and semilocally simply connected. Let H0

and H1 be subgroups of π1(X,x0) such that H0 ⊂ H1. Let pi : XHi
→ X be covering spaces

corresponding to the subgroups Hi. Prove that there is a covering space map f : XH0
→ XH1

such
that p1 ◦ f = p0.

Let yi ∈ XHi
be basepoints above x0 (i = 0, 1). Then pi∗(π1(XHi

, yi)) = Hi, and H0 ⊂ H1

implies there is a lift f : XH0
→ XH1

of the map p0, by the lifting criterion. That is, we have
f : XH0

→ XH1
such that p1 ◦ f = p0.

We need to show that XH1
is evenly covered by f . Given y ∈ XH1

let U ⊂ X be a path
connected open neighborhood of x = p1(y) that is evenly covered by both p0 and p1. Let V ⊂ XH1

be the slice of p−1
1 (U) containing y. Note that V is path connected, and so are all slices of p−1

1 (U)
and p−1

0 (U).
Denote the slices of p−1

0 (U) by {Wz | z ∈ p−1
0 (x)}, where Wz is the slice containing the point z.

Let C be the subcollection {Wz | z ∈ f−1(y)}. Every slice Wz is mapped by f into a single slice of
p−1
0 (U), since these sets are path connected. Since f(z) ∈ p−1

1 (x), the image of Wz is in V if and
only if f(z) = y. Hence f−1(V ) is the union of the slices in C.

Given Wz ∈ C, the homeomorphisms p0|Wz
and p1|V ◦f |Wz

are equal, and so (p1|V )−1 ◦p0|Wz
=

f |Wz
. Hence the latter map is a homeomorphism, and V is an evenly covered neighborhood of y.

2. Show that if a path connected, locally path connected space X has finite fundamental group,
then every map X → S1 is nullhomotopic. [Use the covering R → S1.]

Let f : X → S1 be the map and p : R → S1 the usual covering map. The image subgroup
f∗(π1(X)) ⊂ π1(S

1) is finite, and must therefore be trivial since Z has no non-trivial finite sub-
groups. Then f∗(π1(X)) ⊂ p∗(π1(R)) (for any choice of basepoints), so the lifting criterion implies
that there is a lift f̃ : X → R. Let F : X × I → R be the straight line homotopy from f̃ to any
constant map. Then p ◦ F is a homotopy from f to a constant map, and f is nullhomotopic.

3. Let a and b be the two free generators of π1(S
1 ∨ S1) corresponding to the two S1 summands.

(a) Find the covering space of S1∨S1 corresponding to the normal subgroup generated by {a2, b2}.

(b) Find the covering space corresponding to the normal subgroup generated by {a2, b2, (ab)4}.

(a) The covering is shown below:

Each vertex is in the same orbit as its neighbor, via a covering translation given by rotation by π
in the circle through the two vertices. Thus, the covering group acts transitively on a fiber, and
the covering is regular. Since a2 and b2 are loops in the cover, the corresponding normal subgroup



of 〈a, b〉 contains 〈〈a2, b2〉〉 (the smallest normal subgroup containing a2 and b2). For the opposite
inclusion, let T be the maximal tree given by all the leftward-oriented edges in the picture. Using
this tree in the usual way, the free generators of the fundamental group are represented by the
loops with labels (ab)ka2(ab)−k or (ab)kab2a−1(ab)−k for k ∈ Z. These words are all conjugates in
〈a, b〉 of a2 and b2, so the image subgroup is contained in 〈〈a2, b2〉〉.
(b) The covering is:

As above, the covering is regular since the group of covering translations acts transitively on the
vertices. (One of these is given by the composition of a reflection in the plane, and “inversion” which
switches inside and outside edges.) Since a2, b2, and (ab)4 are all represented by loops in the cover,
the corresponding normal subgroup of 〈a, b〉 contains 〈〈a2, b2, (ab)4〉〉. Next let T be the maximal
tree consisting of all inner edges except for one “b” edge. The fundamental group of the cover
has 9 free generators, labeled by the words a2, ab2a−1, aba2(ab)−1, abab2(aba)−1, ababa2(abab)−1,
ababab2(ababa)−1, abababa2(ababab)−1, abababab2(abababa)−1, and (ab)4. These are all conjugates
of a2, b2, and (ab)4, so the subgroup is contained in 〈〈a2, b2, (ab)4〉〉.

4. Find all connected 2-sheeted and 3-sheeted covering spaces of S1 ∨ S1, up to isomorphism
without basepoints.

There are three 2-sheeted coverings:

There are seven 3-sheeted coverings:



5. Let p : X̃ → X be a simply connected covering space of X. Let A ⊂ X be path connected
and locally path connected, and let Ã ⊂ X̃ be a path component of p−1(A). Show that the
restricted map p : Ã → A is the covering space corresponding to the kernel of the homomorphism
π1(A) → π1(X).

We have seen in the previous course that p|p−1(A) : p−1(A) → A is a covering space. Also, it is
easy to check that the restriction of a covering space to a path component is also a covering space.
Now let x0 ∈ A and y0 ∈ Ã be basepoints with p(y0) = x0.

Let i : A → X and j : Ã → X̃ be the inclusion maps and let p′ = p| eA
. Then we have p◦j = i◦p′,

and hence p∗ ◦ j∗ = i∗ ◦ p′
∗
. Since p∗ ◦ j∗ factors through π1(X̃, y0), which is trivial, the composition

i∗ ◦ p′
∗

is trivial. That is, p′
∗
(π1(Ã, y0)) ⊂ ker(i∗).

Next we show that p′
∗
(π1(Ã, y0)) ⊃ ker(i∗). Let [f ] ∈ ker(i∗) where f is a loop in A at x0. Let

f̃ be the unique lift of f to Ã with initial endpoint y0. Then j ◦ f̃ is a lift of i ◦ f to X̃ with initial
point y0. Since [i ◦ f ] = 1 in π1(X,x0), this latter lift is in fact a loop in X̃. Hence f̃ is a loop in
Ã, and [f ] = [p′ ◦ f̃ ] in π1(A, x0). That is, [f ] is the image of [f̃ ] under p′

∗
.

6. Let φ : R
2 → R

2 be the linear transformation φ(x, y) = (2x, y/2). This generates an action of
Z on X = R

2 − {0}. Show this action is a covering space action. Show the orbit space X/Z is
non-Hausdorff, and describe how it is a union of four subspaces homeomorphic to S 1 × R, coming
from the complementary components of the x-axis and the y-axis. Can you find the fundamental
group of X/Z?

First we need to show that every point has on open neighborhood that is disjoint from all of its
translates under powers of φ. For the point (a, b) a product neighborhood of the form (c, 2c) × R

where a/2 < c < a (if a 6= 0) or R × (d, 2d) where b/2 < d < b (if b 6= 0) will work. Hence
q : X → X/Z is a covering space map.

To see that X/Z is not Hausdorff, consider two points of the form (a, 0) and (0, b) in X. Any
open neighborhood of [(a, 0)] in X/Z is given by a φ-invariant open neighborhood of the orbit of
(a, 0). Such a set must contain a small product neighborhood U = (a − ε, a + ε) × (−ε, ε) and all
of its translates under powers of φ. Simlarly a neighborhood of [(0, b)] is given by a φ-invariant
set containing V = (−δ, δ) × (b − δ, b + δ) and its images under φk, k ∈ Z. Now take k ∈ Z large
enough that a/2k < δ and 2kε > b. Then φ−k(U) intersects V , and so [(a, 0)] and [(0, b)] cannot be
separated by open sets in X/Z.

The group action preserves the subset (0,∞) ×R, and identifies each line x = a homeomorphi-
cally to the line x = 2a. Hence the image of this set is homeomorphic to S1 ×R. The same is true
of the subsets (−∞, 0) × R, R × (0,∞), and R × (−∞, 0). Since these sets cover X, the quotient
is a union of four copies of S1 × R. Each line of the form {a} × R in the annulus ((0,∞) × R)/Z

spirals around and limits onto two circles (the images of the two halves of the y-axis). Similarly,
the circle S1 × {0} is the limiting circle for lines in two of the other annuli.



We know that S has fundamental group Z and the group of covering translations of this (regular)
covering is also Z. Hence π1(X/Z) maps onto Z with kernel isomorphic to Z. It follows that π1(X/Z)
is a semidirect product Z o Z. There are only two such groups, Z × Z and a non-abelian group
(because there are only two automorphisms of Z). To see that π1(X/Z) ∼= Z × Z, we show that
its generators commute. These generators are given by loops in X/Z as follows: one is the image
of the loop γ in X which generates π1(X,x0); the other is the image of a path α in X joining the
basepoint x0 to φ(x0). It is not difficult to map I × I into X so that its boundary maps to the path
γαφ(γ)α. This is possible because φ preserves the orientation of X. Then the boundary of the
image of this square in X/Z represents the commutator of the generators, and so they commute.


