Exam I Solutions
Algebraic Topology
October 19, 2006

1. Let X be path connected, locally path connected, and semilocally simply connected. Let Hy
and H; be subgroups of m(X,z) such that Hy C H;. Let p;: Xpy, — X be covering spaces
corresponding to the subgroups H;. Prove that there is a covering space map f: Xp, — Xpg, such
that py o f = po.

Let y; € Xp, be basepoints above zg (i = 0,1). Then p;,(71(Xu,,v:)) = H;, and Hy C Hy
implies there is a lift f: Xg, — Xpu, of the map po, by the lifting criterion. That is, we have
f+ Xng, — Xu, such that p; o f = pog.

We need to show that Xp, is evenly covered by f. Given y € Xy, let U C X be a path
connected open neighborhood of x = p1(y) that is evenly covered by both py and p1. Let V. C X,
be the slice of p; *(U) containing y. Note that V' is path connected, and so are all slices of p; *(U)
and py H(U).

Denote the slices of py  (U) by {W. | z € py*(2)}, where W, is the slice containing the point z.
Let C be the subcollection {W, | z € f~(y)}. Every slice W, is mapped by f into a single slice of
po H(U), since these sets are path connected. Since f(z) € p;*(x), the image of W, is in V if and
only if f(z) =y. Hence f~1(V) is the union of the slices in C.

Given W, € C, the homeomorphisms polw. and p1|y o f|w. are equal, and so (p1|v) ™! opo|w, =
flw.. Hence the latter map is a homeomorphism, and V' is an evenly covered neighborhood of y.

2. Show that if a path connected, locally path connected space X has finite fundamental group,
then every map X — S is nullhomotopic. [Use the covering R — S1.]

Let f: X — S' be the map and p: R — S! the usual covering map. The image subgroup
fe(m1(X)) C w1 (SY) is finite, and must therefore be trivial since Z has no non-trivial finite sub-
groups. Then f,(m1(X)) C p«(m1(R)) (for any choice of basepoints), so the lifting criterion implies
that there is a lift f: X — R. Let F: X x I — R be the straight line homotopy from f to any
constant map. Then p o F' is a homotopy from f to a constant map, and f is nullhomotopic.

3. Let a and b be the two free generators of m1(S* V S!) corresponding to the two S summands.
(a) Find the covering space of S'V S! corresponding to the normal subgroup generated by {a?, b}.
(b) Find the covering space corresponding to the normal subgroup generated by {a?,b%, (ab)*}.

(A) The covering is shown below:

Each vertex is in the same orbit as its neighbor, via a covering translation given by rotation by 7
in the circle through the two vertices. Thus, the covering group acts transitively on a fiber, and
the covering is regular. Since a? and b? are loops in the cover, the corresponding normal subgroup



of (a,b) contains ((a?,b?)) (the smallest normal subgroup containing a® and b?). For the opposite
inclusion, let T' be the maximal tree given by all the leftward-oriented edges in the picture. Using
this tree in the usual way, the free generators of the fundamental group are represented by the
loops with labels (ab)*a?(ab)™* or (ab)*ab’a='(ab)~" for k € Z. These words are all conjugates in
{a,b) of a®> and b?, so the image subgroup is contained in {{a?,b?)).

(B) The covering is:

As above, the covering is regular since the group of covering translations acts transitively on the
vertices. (One of these is given by the composition of a reflection in the plane, and “inversion” which
switches inside and outside edges.) Since a2, b, and (ab)* are all represented by loops in the cover,
the corresponding normal subgroup of (a,b) contains ((a?,b?, (ab)*). Next let T be the maximal
tree consisting of all inner edges except for one ‘b” edge. The fundamental group of the cover
has 9 free generators, labeled by the words a?, ab’a™!, aba®(ab)™!, abab?(aba)~!, ababa®(abab)~!,
ababab?®(ababa) ', abababa®(ababab) !, abababab?(abababa)~', and (ab)*. These are all conjugates
of a?, b2, and (ab)?, so the subgroup is contained in ((a?,b?, (ab)*)).

4. Find all connected 2-sheeted and 3-sheeted covering spaces of SV S, up to isomorphism
without basepoints.

There are three 2-sheeted coverings:
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There are seven 3-sheeted coverings:
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5. Let p: X —> X bea simply connected covering space of X. Let A C X be path connected
and locally path connected, and let AC X bea path component of p~!(A4). Show that the
restricted map p: A — Ais the covering space corresponding to the kernel of the homomorphism
m(A) — m(X).

We have seen in the previous course that p‘pfl(A) : p~1(A) — A is a covering space. Also, it is
easy to check that the restriction of a covering space to a path component is also a covering space.
Now let zo € A and yo € A be basepoints with p(yo) = xo.

Leti: A— X andj: A — X be the inclusion maps and let p’ = p|g. Then we have poj = iop/,
and hence py o j. = i opl,. Since py o j, factors through Wl()?, Yo), which is trivial, the composition
ix 0 pl, is trivial. That is, pi.(m1(A,y0)) C ker(i).

Next we show that pf,(my( (A,50)) D ker(iy). Let [f] € ker(i,) where f is a loop in A at zg. Let
f be the unique lift of f to A with initial endpoint yo. Then jo f is a lift ofiof to X with initial
point yo. Since [io f] = 1 in m1(X, x¢), this latter lift is in fact a loop in X. Hence f is a loop in
A, and [f] = [0/ o f] in w1 (A, z0). That is, [f] is the image of [f] under p/,.

6. Let ¢: R? — R? be the linear transformation ¢(z,y) = (2z,y/2). This generates an action of
Z on X = R? — {0}. Show this action is a covering space action. Show the orbit space X/Z is
non-Hausdorff, and describe how it is a union of four subspaces homeomorphic to S' x R, coming
from the complementary components of the z-axis and the y-axis. Can you find the fundamental
group of X/Z7?

First we need to show that every point has on open neighborhood that is disjoint from all of its
translates under powers of ¢. For the point (a,b) a product neighborhood of the form (c,2c) x R
where a/2 < ¢ < a (if a # 0) or R x (d,2d) where b/2 < d < b (if b # 0) will work. Hence
q: X — X/Z is a covering space map.

To see that X/Z is not Hausdorfl, consider two points of the form (a,0) and (0,b) in X. Any
open neighborhood of [(a,0)] in X/Z is given by a ¢-invariant open neighborhood of the orbit of
(a,0). Such a set must contain a small product neighborhood U = (a — €,a + €) X (—¢,€) and all
of its translates under powers of ¢. Simlarly a neighborhood of [(0,b)] is given by a ¢-invariant
set containing V = (—6,68) x (b — 6,b+ §) and its images under ¢*, k € Z. Now take k € 7 large
enough that a/2F < § and 2¥e¢ > b. Then ¢=*(U) intersects V, and so [(a,0)] and [(0,b)] cannot be
separated by open sets in X/Z.

The group action preserves the subset (0,00) x R, and identifies each line x = a homeomorphi-
cally to the line x = 2a. Hence the image of this set is homeomorphic to S' x R. The same is true
of the subsets (—00,0) x R, R x (0,00), and R x (—o00,0). Since these sets cover X, the quotient
is a union of four copies of S' x R. Fach line of the form {a} x R in the annulus ((0,00) x R)/Z
spirals around and limits onto two circles (the images of the two halves of the y-axis). Similarly,
the circle S* x {0} is the limiting circle for lines in two of the other annuli.



We know that S has fundamental group 7 and the group of covering translations of this (regular)
covering is also Z. Hence 71 (X /Z) maps onto Z with kernel isomorphic to Z. It follows that m1(X/Z)
is a semidirect product Z x Z. There are only two such groups, Z x Z and a non-abelian group
(because there are only two automorphisms of Z). To see that m(X/Z) = Z x Z, we show that
its generators commute. These generators are given by loops in X/7 as follows: one is the image
of the loop v in X which generates m1(X,x); the other is the image of a path « in X joining the
basepoint xg to ¢(x¢). It is not difficult to map I x I into X so that its boundary maps to the path
~yag(¥)a. This is possible because ¢ preserves the orientation of X. Then the boundary of the
image of this square in X /7 represents the commutator of the generators, and so they commute.




