1. Let X be path connected, locally path connected, and semilocally simply connected. Let H_0 and H_1 be subgroups of $\pi_1(X, x_0)$ such that $H_0 \subset H_1$. Let $p_i: X_{H_i} \to X$ be covering spaces corresponding to the subgroups H_i . Prove that there is a covering space map $f: X_{H_0} \to X_{H_1}$ such that $p_1 \circ f = p_0$.

Let $y_i \in X_{H_i}$ be basepoints above x_0 (i = 0, 1). Then $p_{i*}(\pi_1(X_{H_i}, y_i)) = H_i$, and $H_0 \subset H_1$ implies there is a lift $f: X_{H_0} \to X_{H_1}$ of the map p_0 , by the lifting criterion. That is, we have $f: X_{H_0} \to X_{H_1}$ such that $p_1 \circ f = p_0$.

We need to show that X_{H_1} is evenly covered by f. Given $y \in X_{H_1}$ let $U \subset X$ be a path connected open neighborhood of $x = p_1(y)$ that is evenly covered by both p_0 and p_1 . Let $V \subset X_{H_1}$ be the slice of $p_1^{-1}(U)$ containing y. Note that V is path connected, and so are all slices of $p_1^{-1}(U)$ and $p_0^{-1}(U)$.

Denote the slices of $p_0^{-1}(U)$ by $\{W_z \mid z \in p_0^{-1}(x)\}$, where W_z is the slice containing the point z. Let C be the subcollection $\{W_z \mid z \in f^{-1}(y)\}$. Every slice W_z is mapped by f into a single slice of $p_0^{-1}(U)$, since these sets are path connected. Since $f(z) \in p_1^{-1}(x)$, the image of W_z is in V if and only if f(z) = y. Hence $f^{-1}(V)$ is the union of the slices in C.

Given $W_z \in C$, the homeomorphisms $p_0|_{W_z}$ and $p_1|_V \circ f|_{W_z}$ are equal, and so $(p_1|_V)^{-1} \circ p_0|_{W_z} = f|_{W_z}$. Hence the latter map is a homeomorphism, and V is an evenly covered neighborhood of y.

2. Show that if a path connected, locally path connected space X has finite fundamental group, then every map $X \to S^1$ is nullhomotopic. [Use the covering $\mathbb{R} \to S^1$.]

Let $f: X \to S^1$ be the map and $p: \mathbb{R} \to S^1$ the usual covering map. The image subgroup $f_*(\pi_1(X)) \subset \pi_1(S^1)$ is finite, and must therefore be trivial since \mathbb{Z} has no non-trivial finite subgroups. Then $f_*(\pi_1(X)) \subset p_*(\pi_1(\mathbb{R}))$ (for any choice of basepoints), so the lifting criterion implies that there is a lift $\tilde{f}: X \to \mathbb{R}$. Let $F: X \times I \to \mathbb{R}$ be the straight line homotopy from \tilde{f} to any constant map. Then $p \circ F$ is a homotopy from f to a constant map, and f is nullhomotopic.

3. Let a and b be the two free generators of $\pi_1(S^1 \vee S^1)$ corresponding to the two S^1 summands. (a) Find the covering space of $S^1 \vee S^1$ corresponding to the normal subgroup generated by $\{a^2, b^2\}$. (b) Find the covering space corresponding to the normal subgroup generated by $\{a^2, b^2, (ab)^4\}$.

(A) The covering is shown below:

Each vertex is in the same orbit as its neighbor, via a covering translation given by rotation by π in the circle through the two vertices. Thus, the covering group acts transitively on a fiber, and the covering is regular. Since a^2 and b^2 are loops in the cover, the corresponding normal subgroup

of $\langle a, b \rangle$ contains $\langle \langle a^2, b^2 \rangle \rangle$ (the smallest normal subgroup containing a^2 and b^2). For the opposite inclusion, let T be the maximal tree given by all the leftward-oriented edges in the picture. Using this tree in the usual way, the free generators of the fundamental group are represented by the loops with labels $(ab)^k a^2 (ab)^{-k}$ or $(ab)^k ab^2 a^{-1} (ab)^{-k}$ for $k \in \mathbb{Z}$. These words are all conjugates in $\langle a, b \rangle$ of a^2 and b^2 , so the image subgroup is contained in $\langle \langle a^2, b^2 \rangle \rangle$. (B) The covering is:

4. Find all connected 2-sheeted and 3-sheeted covering spaces of $S^1 \vee S^1$, up to isomorphism without basepoints.

There are seven 3-sheeted coverings:

5. Let $p: \widetilde{X} \to X$ be a simply connected covering space of X. Let $A \subset X$ be path connected and locally path connected, and let $\widetilde{A} \subset \widetilde{X}$ be a path component of $p^{-1}(A)$. Show that the restricted map $p: \widetilde{A} \to A$ is the covering space corresponding to the kernel of the homomorphism $\pi_1(A) \to \pi_1(X)$.

We have seen in the previous course that $p|_{p^{-1}(A)}: p^{-1}(A) \to A$ is a covering space. Also, it is easy to check that the restriction of a covering space to a path component is also a covering space. Now let $x_0 \in A$ and $y_0 \in \widetilde{A}$ be basepoints with $p(y_0) = x_0$.

Let $i: A \to X$ and $j: \widetilde{A} \to \widetilde{X}$ be the inclusion maps and let $p' = p|_{\widetilde{A}}$. Then we have $p \circ j = i \circ p'$, and hence $p_* \circ j_* = i_* \circ p'_*$. Since $p_* \circ j_*$ factors through $\pi_1(\widetilde{X}, y_0)$, which is trivial, the composition $i_* \circ p'_*$ is trivial. That is, $p'_*(\pi_1(\widetilde{A}, y_0)) \subset \ker(i_*)$.

Next we show that $p'_*(\pi_1(A, y_0)) \supset \ker(i_*)$. Let $[f] \in \ker(i_*)$ where f is a loop in A at x_0 . Let \tilde{f} be the unique lift of f to \tilde{A} with initial endpoint y_0 . Then $j \circ \tilde{f}$ is a lift of $i \circ f$ to \tilde{X} with initial point y_0 . Since $[i \circ f] = 1$ in $\pi_1(X, x_0)$, this latter lift is in fact a loop in \tilde{X} . Hence \tilde{f} is a loop in \tilde{A} , and $[f] = [p' \circ \tilde{f}]$ in $\pi_1(A, x_0)$. That is, [f] is the image of $[\tilde{f}]$ under p'_* .

6. Let $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation $\phi(x, y) = (2x, y/2)$. This generates an action of \mathbb{Z} on $X = \mathbb{R}^2 - \{0\}$. Show this action is a covering space action. Show the orbit space X/\mathbb{Z} is non-Hausdorff, and describe how it is a union of four subspaces homeomorphic to $S^1 \times \mathbb{R}$, coming from the complementary components of the *x*-axis and the *y*-axis. Can you find the fundamental group of X/\mathbb{Z} ?

First we need to show that every point has on open neighborhood that is disjoint from all of its translates under powers of ϕ . For the point (a, b) a product neighborhood of the form $(c, 2c) \times \mathbb{R}$ where a/2 < c < a (if $a \neq 0$) or $\mathbb{R} \times (d, 2d)$ where b/2 < d < b (if $b \neq 0$) will work. Hence $q: X \to X/\mathbb{Z}$ is a covering space map.

To see that X/\mathbb{Z} is not Hausdorff, consider two points of the form (a, 0) and (0, b) in X. Any open neighborhood of [(a, 0)] in X/\mathbb{Z} is given by a ϕ -invariant open neighborhood of the orbit of (a, 0). Such a set must contain a small product neighborhood $U = (a - \epsilon, a + \epsilon) \times (-\epsilon, \epsilon)$ and all of its translates under powers of ϕ . Similarly a neighborhood of [(0, b)] is given by a ϕ -invariant set containing $V = (-\delta, \delta) \times (b - \delta, b + \delta)$ and its images under ϕ^k , $k \in \mathbb{Z}$. Now take $k \in \mathbb{Z}$ large enough that $a/2^k < \delta$ and $2^k \epsilon > b$. Then $\phi^{-k}(U)$ intersects V, and so [(a, 0)] and [(0, b)] cannot be separated by open sets in X/\mathbb{Z} .

The group action preserves the subset $(0, \infty) \times \mathbb{R}$, and identifies each line x = a homeomorphically to the line x = 2a. Hence the image of this set is homeomorphic to $S^1 \times \mathbb{R}$. The same is true of the subsets $(-\infty, 0) \times \mathbb{R}$, $\mathbb{R} \times (0, \infty)$, and $\mathbb{R} \times (-\infty, 0)$. Since these sets cover X, the quotient is a union of four copies of $S^1 \times \mathbb{R}$. Each line of the form $\{a\} \times \mathbb{R}$ in the annulus $((0, \infty) \times \mathbb{R})/\mathbb{Z}$ spirals around and limits onto two circles (the images of the two halves of the y-axis). Similarly, the circle $S^1 \times \{0\}$ is the limiting circle for lines in two of the other annuli. We know that S has fundamental group \mathbb{Z} and the group of covering translations of this (regular) covering is also \mathbb{Z} . Hence $\pi_1(X/\mathbb{Z})$ maps onto \mathbb{Z} with kernel isomorphic to \mathbb{Z} . It follows that $\pi_1(X/\mathbb{Z})$ is a semidirect product $\mathbb{Z} \rtimes \mathbb{Z}$. There are only two such groups, $\mathbb{Z} \times \mathbb{Z}$ and a non-abelian group (because there are only two automorphisms of \mathbb{Z}). To see that $\pi_1(X/\mathbb{Z}) \cong \mathbb{Z} \times \mathbb{Z}$, we show that its generators commute. These generators are given by loops in X/\mathbb{Z} as follows: one is the image of the loop γ in X which generates $\pi_1(X, x_0)$; the other is the image of a path α in X joining the basepoint x_0 to $\phi(x_0)$. It is not difficult to map $I \times I$ into X so that its boundary maps to the path $\gamma \alpha \phi(\overline{\gamma}) \overline{\alpha}$. This is possible because ϕ preserves the orientation of X. Then the boundary of the image of this square in X/\mathbb{Z} represents the commutator of the generators, and so they commute.