Take-home Exam II
Algebraic Topology
Official Due Date: November 30, 2006

Advice: Wherever possible, try to use the long exact sequence of a pair or the Excision theorem. You may use problem 27(a) from section 2.1 of Hatcher as well.

1(a) Show that $H_{0}(X, A)=0$ if and only if A meets each path component of X.
(b) Show that $H_{1}(X, A)=0$ if and only if $H_{1}(A) \rightarrow H_{1}(X)$ is surjective and each path-component of X contains at most one path-component of A.
2. Compute the groups $H_{n}(X, A)$ and $H_{n}(X, B)$ for X a closed orientable surface of genus two with A and B the circles shown. [What are X / A and X / B ?]

See problem 17 (b) of section 2.1 of Hatcher for the picture.
3. Let X be the cone on the 1 -skeleton of Δ^{3}, the union of all line segments joining points in the six edges of Δ^{3} to the barycenter of Δ^{3}. Compute the local homology groups $H_{n}(X, X-\{x\})$ for all $x \in X$. Using this, identify subsets $A \in X$ with the property that $f(A)=A$ for all homeomorphisms $f: X \rightarrow X$.
4. Show that $\widetilde{H}_{n}(X) \cong \widetilde{H}_{n+1}(S X)$ for all n, where $S X$ is the suspension of X (two copies of the cone $C X$ joined along X). [There is a useful result in section 2.1 of Hatcher.]
5. Show that $S^{1} \times S^{1}$ and $S^{1} \vee S^{1} \vee S^{2}$ have isomorphic homology groups in all dimensions, but their universal covering spaces do not.

