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You may apply theorems from the course, but please give the name or statement of the theorem.

1. Compute the homology groups of S3×S5 by using a product cell structure and cellular homology.

There are cell structures for S3 and S5 having cells e0, e3 and e0, e5 respectively. Hence the
product cell structure for S3 × S5 has cells e0 × e0, e0 × e5, e3 × e0, and e3 × e5. That is, there is
one cell of each of the dimensions 0, 3, 5, 8. Thus the cellular chain complex for S 3 × S5 is

· · · → 0 → Z → 0 → 0 → Z → 0 → Z → 0 → 0 → Z → 0.

Note that all homomorphisms are zero, so the homology groups of this chain complex are equal to
the chain groups. So Hi(S

3 × S5) is Z for i = 0, 3, 5, 8 and 0 otherwise.

2. Find the local homology groups Hn(X,X − {x}) for various points x in the Möbius band and
in the annulus S1 × I. Then show that these two spaces are not homeomorphic. [Consider their
boundaries.]

By Excision, Hn(X,X − {x}) ∼= Hn(U,U − {x}) for any open neighborhood U of x ∈ X.
Also recall that Hn(U,U − {x}) = H̃n(U,U − {x}). To compute H̃n(U,U − {x}) we consider two
possibilities for x.

If x is an interior point of the Möbius band or annulus, U may be taken to be homeomorphic
to an open disk with center x. Since the disk is contractible, the long exact sequence for the pair
(U,U −{x}) gives that the boundary map ∂ : H̃n(U,U −{x}) → H̃n−1(U −{x}) is an isomorphism
for all n. Note that U − {x} is homotopy equivalent to a circle, with reduced homology groups
given by Z in dimension 1 and zero otherwise. Thus H̃n(U,U − {x}) is Z for n = 2 and zero for
n 6= 2.

If x is a boundary point of the Möbius band or annulus, U may be taken to be homeomorphic
to half of an open disk, such as {(a, b) ∈ R

2 | a2 + b2 < 1 and b ≥ 0}, with x corresponding to the
origin. In this case both U and U − {x} are contractible, so every two out of three groups in the
reduced long exact sequence for (U,U − {x}) is zero. Exactness implies that H̃n(U,U − {x}) = 0
for all n.

Thus boundary points and interior points have different local homology groups in dimension
2. Hence any homeomorphism must restrict to homeomorphisms of the boundaries and of the
interiors. Now, to see that there is no homeomorphism from the Möbius band to the annulus, note
that their boundaries are not homeomorphic, since the boundary of the Möbius band is a circle
and the boundary of the annulus is two circles.

3. Recall that the augmentation map ε : C0(X) → Z take a 0-chain
∑

i
niσi to the integer

∑
i
ni.

Prove that if X is non-empty and path connected then ε induces an isomorphism H0(X) → Z.



Since X is non-empty, there exists a singular 0-simplex σ : ∆0 → X. Then ε(nσ) = n, and ε is
surjective. So C0(X)/ ker(ε)

ε
→ Z is an isomorphism, and it remains to verify that ker(ε) is equal

to the image of ∂1 : C1(X) → C0(X).
If σ : ∆1 → X is a 1-simplex (a path), then ε(∂1(σ)) = ε(σ|v1

− σ|v0
) = 1 − 1 = 0. Hence

im(∂1) ⊂ ker(ε), since 1-simplices generate C1(X).
If α =

∑
i
niσi is a 0-chain with

∑
i
ni = 0 then we construct a 1-chain with boundary α as

follows. Let xi ∈ X be the image of the 0-simplex σi. If ni is negative, draw |ni| outgoing paths
from xi, and if ni is positive, draw ni incoming paths to xi. Since

∑
i
ni = 0, the numbers of

incoming and outgoing paths agree, and they can be joined in a bijective fashion (since X is path
connected). That is, we now have a family of paths, such that the number of endpoints at xi

is |ni|, with signs corresponding to orientations. This family of paths, considered as a 1-chain,
has boundary α. Hence im(∂1) ⊃ ker(ε). [See Proposition 2.7 of Hatcher for a slightly different
argument.]

4. (a) Using cellular homology, find the homology groups of the 2-complex X which is defined as
follows. It has one 0-cell, four 1-cells (a, b, c, and d ), and four 2-cells attached to the 1-skeleton as
shown below:

PSfrag replacements

a

a a

a

ab

bb

b

b c c

cc

c

dd

d

d d

(b) Write down a presentation for the fundamental group of X. [It turns out that this group is
infinite, though this is not at all obvious.]

(a) First note that the cellular chain complex has the form 0 → Z
4 ∂2→ Z

4 ∂1→ Z → 0, by
considering the number of cells of each dimension. Since each 1-cell has both endpoints mapping
to the same 0-cell (with opposite signs), the homomorphism ∂1 is zero. To compute ∂2, we consider
the attaching maps of each 2-cell and record its degree relative to each 1-cell. For the first 2-cell, its
degrees around relative to a, b, c, and d, respectively, are (1, 0, 0, 0). The second 2-cell has degrees
(0, 1, 0, 0), the third has degrees (0, 0, 1, 0), and the fourth has degrees (0, 0, 0, 1). Hence ∂2 is given
by the identity matrix.

Now we can compute the homology groups of X. The chain complex is exact in dimensions 1
and higher, so Hi(X) = 0 for i > 0. Also, H0(X) = Z. Note that X has the same homology as a
point.

(b) A presentation is given by:

〈a, b, c, d | a2b−1a−1b = b2c−1b−1c = c2d−1c−1d = d2a−1d−1a = 1〉.

It turns out that this group is infinite (and non-trivial) and so X is not contractible, even though
it has the homology of a contractible space.

5. (a) Given n > 1, construct a space X such that H1(X) is cyclic of order n.

(b) Can you construct a space Y such that H2(Y ) is cyclic of order n?



(a) Let X be a cell complex having one 0-cell, one 1-cell, and one 2-cell. Attach the 2-cell by a

map S1 → S1 of degree n. The cellular chain complex is 0 → Z
n
→ Z

0
→ Z → 0. The first homology

group is then Z/nZ.

(b) Let Y have one cell in each of dimensions 0, 2, and 3. Note that the 2-skeleton is homeo-
morphic to S2. Attach the 3-cell by a map S2 → S2 of degree n. Then the cellular chain complex
is 0 → Z

n
→ Z → 0 → Z → 0 and the second homology group is Z/nZ.

Alternatively, let Y = SX, the suspension of X. Then we have seen that H̃i(X) ∼= H̃i+1(Y ),
and so H2(Y ) = H̃2(Y ) ∼= H̃1(X) ∼= Z/nZ.

6. (a) Define the degree of a map f : Sn → Sn.

(b) Prove that the antipodal map is not homotopic to the identity map if n is even. State carefully
each of the properties of the degree that you use.

(a) Given f : Sn → Sn, there is an induced homomorphism f∗ : Hn(Sn) → Hn(Sn). Since
Hn(Sn) is infinite cyclic, choosing a generator identifies Hn(Sn) with Z. Then f∗ : Z → Z is
multiplication by some integer, which is the degree of f .

(b) We regard Sn as the unit sphere in R
n+1 with coordinates x0, . . . , xn. The antipodal map

sends (x0, . . . , xn) to (−x0, . . . ,−xn). It is the composition of n + 1 reflections across hyperplanes,
each of which changes the sign of one coordinate.

The properties we need are: deg(id) = 1, deg(r) = −1 if r is reflection across a hyperplane,
deg(f ◦ g) = deg(f) deg(g), and deg(f) = deg(g) if f ' g.

By the description of the antipodal map given above, its degree is (−1)n+1, which is −1 if n is
even. Then it cannot be homotopic to the identity map, by the first and last properties just given.


