Take-home Exam I Algebraic Topology Due March 6, 2007

- 1. Compute the simplicial cohomology groups of the Klein bottle and $\mathbb{R}P^2$ in \mathbb{Z} and \mathbb{Z}_2 coefficients, using the Δ -complex structure given on page 102.
- **2.** Regarding a cochain $\varphi \in C^1(X; G)$ as a function from paths in X to G, show that if φ is a cocycle, then
- (a) $\varphi(f \cdot g) = \varphi(f) + \varphi(g)$,
- **(b)** φ takes the value 0 on constant paths,
- (c) $\varphi(f) = \varphi(g)$ if $f \simeq g$,
- (d) φ is a coboundary if and only if $\varphi(f)$ depends only on the endpoints of f, for all f.
- **3.** Compute $H^i(S^n; G)$ in two ways:
- (a) Show that $\widetilde{H}^{i-1}(S^{n-1};G) \cong \widetilde{H}^i(S^n;G)$ for all i, using either the long exact sequence or the Mayer-Vietoris sequence; then compute $H^i(S^n;G)$ by induction.
- (b) Compute $H^i(S^n; G)$ using cellular cohomology.
- **4.** Show that if $f: S^n \to S^n$ is a map of degree d then $f^*: H^n(S^n; G) \to H^n(S^n; G)$ is multiplication by d.
- **5.** Show that if $\alpha \colon H \to H$ is multiplication by n then $\alpha^* \colon \operatorname{Ext}(H,G) \to \operatorname{Ext}(H,G)$ is also multiplication by n. [Hint: You'll need a chain map from a free resolution of H to itself. Instead of appealing to Lemma 3.1, try to guess what the chain map could be, and verify that it is in fact a chain map.]
- **6.** Without using the Universal Coefficient theorem directly, prove that if (X,A) is a good pair then the quotient map $q: (X,A) \to (X/A,A/A)$ induces isomorphisms $q^*: H^n(X/A,A/A;G) \to H^n(X,A;G)$.