Take-home Exam II Algebraic Topology Due April 26, 2007

1. Let *I* be a directed set and let $\{A_{\alpha}, f_{\alpha\beta}\}$ and $\{B_{\alpha}, g_{\alpha\beta}\}$ be directed systems of groups indexed over *I*. Suppose there are homomorphisms $\phi_{\alpha} \colon A_{\alpha} \to B_{\alpha}$ for each $\alpha \in I$ such that $g_{\alpha\beta} \circ \phi_{\alpha} = \phi_{\beta} \circ f_{\alpha\beta}$ for all α, β . That is, the maps ϕ_{α} form a "directed chain map" from $\{A_{\alpha}\}$ to $\{B_{\alpha}\}$.

Show that there is an induced homomorphism $\phi: \underset{\longrightarrow}{\lim} A_{\alpha} \to \underset{\longrightarrow}{\lim} B_{\alpha}$ making the following diagrams commute for all α :

2. For each α let \mathscr{C}_{α} be a chain complex with groups $\{C^{i}_{\alpha}\}$ and boundary maps $\partial^{i}_{\alpha} \colon C^{i}_{\alpha} \to C^{i-1}_{\alpha}$. Suppose, for each i, that the groups $\{C^{i}_{\alpha}\}_{\alpha \in I}$ form a directed system together with maps $f^{i}_{\alpha\beta} \colon C^{i}_{\alpha} \to C^{i}_{\beta}$ for all $\alpha \leq \beta$. Suppose also that the boundary maps $\{\partial^{i}_{\alpha}\}_{\alpha \in I}$ form a "directed chain map" from $\{C^{i}_{\alpha}\}$ to $\{C^{i-1}_{\alpha}\}$ (see problem 1). Let $\partial^{i} \colon \varinjlim C^{i}_{\alpha} \to \varinjlim C^{i-1}_{\alpha}$ be the induced map given by problem 1.

(a) Show that these limit groups and maps form a chain complex. (Hence there is a limit chain complex $\lim_{\alpha \to \infty} \mathscr{C}_{\alpha}$.)

(b) Show that if each \mathscr{C}_{α} is exact then so is $\lim \mathscr{C}_{\alpha}$.

3. For a map $f: M \to N$ between connected closed orientable manifolds with fundamental classes [M] and [N], the *degree* of f is defined to be the integer d such that $f_*([M]) = d[N]$, so the sign of degree depends on the choice of fundamental classes. Show that for any connected closed orientable n-manifold M there is a degree 1 map $M \to S^n$.

4. Show that $H^0_c(X;G) = 0$ if X is path-connected and noncompact.

5. If M is a connected compact orientable *n*-manifold, a homeomorphism $f: M \to M$ is orientation preserving if f_* takes the fundamental class to itself, and orientation reversing otherwise. Recall that \mathbb{CP}^2 is a 4-manifold with a cell structure having one cell each in dimensions 0, 2, 4. We know that $H_4(\mathbb{CP}^2) = \mathbb{Z}$, so it's orientable. Use the cup product to show that every homeomorphism $f: \mathbb{CP}^2 \to \mathbb{CP}^2$ is orientation preserving. [Hint: Consider what f^* might do to a generator of $H^2(\mathbb{CP}^2;\mathbb{Z})$. You may also want to use problem 4 from Exam I.]

6. Show that if a connected closed orientable manifold M of dimension 2k has $H_{k-1}(M;\mathbb{Z})$ torsion-free, then $H_k(M;\mathbb{Z})$ is also torsion-free.