1. Group Actions on Trees

Definition 1.1. A group G acts on a graph X, denoted by $G \times X \to X$, if G acts on the vertices and edges of X:

1. $G \times \text{vert}(X) \to \text{vert}(X)$
2. $G \times \text{edge}(X) \to \text{edge}(X)$

and the action commutes with the usual incidence functions $o, t : \text{edge}(X) \to \text{vert}(X)$:

\[
\begin{align*}
o(gy) &= g(o(y)) \\
t(gy) &= g(t(y))
\end{align*}
\]

where $g \in G$, $x \in \text{vert}(X)$, and $y \in \text{edge}(X)$.

Definition 1.2. Let G be a group and X a graph upon which G acts.

a. An inversion is a pair consisting of some $g \in G$ and an edge y of X such that $gy = \overline{y}$ (where \overline{y} is the reverse edge of y).

b. If no such pair exists we say that G acts without inversion on X.

In other words, the action does not map any edge to its reverse edge (and thus preserves the orientation of X).

If G acts on X without inversion, then we can define the quotient graph $G \backslash X$ (read: X mod G) in an obvious way:

- The vertex set of $G \backslash X$ is the quotient of $\text{vert}(X)$ under the action of G: $\text{vert}(G \backslash X) = \{ Gx : x \in \text{vert}(X) \}$
- The edge set of $G \backslash X$ is the quotient of $\text{edge}(X)$ under the action of G: $\text{edge}(G \backslash X) = \{ Gy : y \in \text{edge}(X) \}$

Definition 1.3. A tree is a connected, nonempty graph without circuits.

Definition 1.4. Let G be a group acting on a tree X without inversion. A fundamental domain of $G \backslash X$ is a subgraph T of X such that $T \to G \backslash X$ is an isomorphism.

Proposition 1.5. Let G be a group acting upon a tree X without inversion. Then every subtree T' of $G \backslash X$ lifts to a subtree T of X.

Proposition 1.6. Let G be a group acting without inversion on a tree X. A fundamental domain of $G \backslash X$ exists if and only if $G \backslash X$ is a tree.

Proof. (\Rightarrow) Let T be a fundamental domain of $G \backslash X$. Since X is connected and non-empty, then $G \backslash X \cong T$ is connected and non-empty. So T is a tree as a non-empty, connected subgraph of a tree. Thus $G \backslash X$ is a tree.

(\Leftarrow) Suppose $G \backslash X$ is a tree. By Proposition 1.5, $G \backslash X$ is isomorphic to a subtree of X, call it T. This is the desired fundamental domain. □
2. Free Products with Amalgamated Subgroups

Definition 2.1. Suppose the $G = \langle S_G | R_G \rangle$ is a presentation of G where S_G is a set of generators and R_G is a set of relations. Similarly, suppose that $H = \langle S_H | R_H \rangle$ is a presentation of H. Then the **free product of G and H**, denoted $G * H$, is given by:

$$G * H = \langle S_G \cup S_H | R_G \cup R_H \rangle$$

Definition 2.2. Suppose that G and H are as defined above and contain an isomorphic copy of the group F. Let $i_G : F \hookrightarrow G$ and $i_H : F \hookrightarrow H$ be the respective inclusions. Let $R_F = \{ i_G(f)i_H(f)^{-1} : f \in F \}$. Then the **free product of G and H with amalgamated subgroup F** (also called the **amalgam of G and H over F**), denoted $G *_F H$, is given by:

$$G *_F H = \langle S_G \cup S_H | R_G \cup R_H \cup R_F \rangle$$

Example 2.3. Take

$$G = \mathbb{Z}/4\mathbb{Z} = \langle a | a^4 \rangle$$
$$H = \mathbb{Z}/6\mathbb{Z} = \langle b | b^6 \rangle$$
$$F = \mathbb{Z}/2\mathbb{Z} = \langle c | c^2 \rangle$$

along with the inclusions:

- $i_G : \mathbb{Z}/2\mathbb{Z} \hookrightarrow \mathbb{Z}/4\mathbb{Z}$, where $i_G(\mathbb{Z}/2\mathbb{Z}) = \{0, 2\} \subset \mathbb{Z}/4\mathbb{Z}$
- $i_H : \mathbb{Z}/2\mathbb{Z} \hookrightarrow \mathbb{Z}/6\mathbb{Z}$, where $i_H(\mathbb{Z}/2\mathbb{Z}) = \{0, 3\} \subset \mathbb{Z}/6\mathbb{Z}$

So we have that $\mathbb{Z}/4\mathbb{Z} *_{\mathbb{Z}/2\mathbb{Z}} \mathbb{Z}/6\mathbb{Z} = \langle a, b | a^4, b^6, i_G(c)i_H(c)^{-1} \rangle$.
3. Trees and Amalgams

As it turns out, every group that acts without inversion on a graph with a segment as fundamental domain is an amalgam of two groups, and the graph is a tree:

Theorem 3.1. Let G be a group acting without inversion on a graph X, and let T be a segment of X that has edge y (reverse edge \overline{y}) with $o(y) = P$, $t(y) = Q$. Suppose that T is a fundamental domain of $G \setminus X$. Let G_P, G_Q, and $G_y = G_\overline{y}$ be the respective stabilizers of y, P, and Q under the action of G. Then X is a tree if and only if the homomorphism $G_P *_{G_y} G_Q \to G$ induced by the inclusions $G_P \to G$ and $G_Q \to G$ is an isomorphism.

Note: This amalgam makes sense because $G_P \cap G_Q = G_y$.

Proof. We shall need the following two lemmas:

Lemma 3.2. X is connected if and only if G is generated by $G_P \cup G_Q$.

Proof. Let X' be the component of X containing T, and let G' be the set of elements that stabilize X', i.e. $G' = \{ g \in G : gX' = X' \}$. Let G'' be the subgroup of G generated by $G_P \cup G_Q$.

We want to show that $G = G''$. Let $h \in G_P \cup G_Q$. Then T and hT share a common vertex, which gives that $hT \subset X' \Rightarrow hX' = X' \Rightarrow h \in G'$. Thus $G'' \subset G'$.

On the other hand, notice that $G''T$ and $(G - G'')T$ are disjoint subgraphs of X whose union is X. So either $X' \subset G''T$ or $X' \subset (G - G'')T$. Since $T = 1_{G''}T \in G''T$ then $X' \subset G''T$. Thus $G' \subset G'' \Rightarrow G = G' = G''$.

Now $X = X'$ (i.e. X is connected) if and only if $G = G' = G''$. \hfill \Box

Lemma 3.3. X contains no circuit if and only if $G_P *_{G_y} G_Q \to G$ is injective.

Proof. We know that X contains a circuit if and only if there is a path $c = (w_0, \ldots, w_n)$, $n \geq 1$, in X without backtracking such that $o(c) = t(c)$. Write $w_i = h_iy_i$, where $h_i \in G$ and $y_i = y$ or \overline{y}. Passing to the quotient $G \setminus X \cong T$ we get that $\overline{y}_i = y_{i-1}$. Let $P_i = o(y_i) = t(y_{i-1})$. Notice that:

$$h_iP_i = h_i o(y_i) = o(h_iy_i) = t(h_{i-1}y_{i-1}) = h_{i-1}t(y_{i-1}) = h_{i-1}P_i$$

So $g_i \in G_P$, where $h_i = h_{i-1}g_i$. Also notice that $h_iy_i \neq h_{i-1}y_{i-1}$ so that $g_i \notin G_y$. Notice that $o(c) = t(c)$ is equivalent to writing $t(y_n) = P_0$, which is also equivalent to:

$$h_0P_0 = h_nP_0 = h_{n-1}g_nP_0 = h_{n-2}g_{n-1}g_nP_0 = \ldots = h_0g_1g_2 \cdots g_nP_0$$
i.e. \(g_1 g_2 \cdots g_n \in G_{P_0} \).

Thus, \(X \) contains a circuit if and only if we can find a sequence of vertices of \(T \) with \(\{ P_{i-1}, P_i \} = \{ P, Q \} \) for all \(i \) and a sequence of elements \(g_i \in G_{P_i} - G_y \) (\(0 \leq i \leq n \)), such that \(g_0 g_1 \cdots g_n = 1 \). So \(G_P *_{G_y} G_Q \to G \) is not injective. \(\square \)

These two lemmas together form the statement: \(X \) is a tree if and only if \(G_P *_{G_y} G_Q \to G \) is an isomorphism. \(\square \)

The converse is also true: every amalgam of two groups acts on a tree with a segment as fundamental domain:

Theorem 3.4. Let \(G = G_1 *_{A} G_2 \) be the amalgam of \(G_1 \) and \(G_2 \) over \(A \).
Then there is a tree \(X \) (unique up to isomorphism) on which \(G \) acts, with the segment \(T \) (as defined in the previous theorem) as fundamental domain, where \(G_P = G_1, G_Q = G_2, \) and \(G_y = A \) are the respective stabilizers of the vertices and edges.

Proof. Up to isomorphism, \(X \) is the following graph:

\[
\text{vert}(X) = (G/G_1) \coprod (G/G_2) \\
\text{edge}(X) = (G/A) \coprod (G/A)
\]

with the inclusions \(A \to G_1 \) and \(A \to G_2 \) inducing the maps \(o : G/A \to G/G_1 \) and \(t : G/A \to G/G_2 \). Put \(P = 1 \cdot G_1, Q = 1 \cdot G_2, \) and \(y = 1 \cdot G_A \).

\(T \) is then a fundamental domain for the natural action of \(G \) on \(X \). The preceding theorem gives that \(X \) is a tree. \(\square \)

These theorems establish an equivalence between amalgams of two groups and groups acting on trees with a segment as a fundamental domain.

Example 3.5. To show that \(SL(2, \mathbb{Z}) \) is an amalgam of two groups, we need to

1. find a tree with a segment as a fundamental domain upon which \(SL(2, \mathbb{Z}) \) acts without inversion
2. compute the stabilizers of the vertices and the edge of the fundamental domain

Fortunately, \(SL(2, \mathbb{Z}) \) acts in a well-known way on the upper half plane via Möbius transformations. Let \(y \) be the circular arc consisting of the points \(z = e^{i\theta} \) for \(\frac{\pi}{3} \leq \theta \leq \frac{\pi}{2} \). Let \(P = o(y) = e^{\pi i/3} \) and \(Q = t(y) = e^{\pi i/2} = i \).

Define the graph \(X \) to be the union of the transforms of \(y \) by the action of \(G \). Thus \(PQ \) is our desired fundamental domain.

It can be easily shown the action of \(G \) is without inversion and that \(X \) is, in fact, a tree. Theorem 3.1 implies that \(G \) is an amalgam of the stabilizers of \(P \) and \(Q \) over the stabilizer of \(y \):
G_P: Computing the stabilizer of P as such $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot e^{\pi i/3} = e^{\pi i/3}$ yields a cyclic subgroup of $G = SL(2, \mathbb{Z})$ of order 6 generated by $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$. Thus $G_P = \mathbb{Z}/6\mathbb{Z}$.

G_Q: Computing the stabilizer of Q as such $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot i = i$ yields a cyclic subgroup of $G = SL(2, \mathbb{Z})$ of order 4 generated by $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Thus $G_P = \mathbb{Z}/4\mathbb{Z}$.

G_y: Since $G_y = G_P \cap G_Q$, we can see that $G_y = \mathbb{Z}/2\mathbb{Z}$.

We are now able to express $SL(2, \mathbb{Z})$ as an amalgam of $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z}$ over $\mathbb{Z}/2\mathbb{Z}$:

$$SL(2, \mathbb{Z}) \cong \mathbb{Z}/4\mathbb{Z} \ast_{\mathbb{Z}/2\mathbb{Z}} \mathbb{Z}/6\mathbb{Z}$$