Algebra II: Review from Algebra I, Part II

Linear Equations and Graphs of Linear Equations

A linear equation is an equation with two variables (x and y, for example) that both have degree one.

The examples x=5 and y=3 are still linear equations (even though only one variable is showing), because they can be written as __________________ and _____________________.

The graph of a linear equation is a ____________.

How is a linear equation graphed (in the most basic sense; use the fact that two points determine a line)?

Examples: Determine whether the equation given is a linear equation. If so, graph it. If not, explain why it is not linear. Make sure that (1) your lines are drawn with a straightedge (2) the axes and gridmarks are labeled appropriately.

\[2x + y = 5 \]

\[y = -2 \]
\[x - 1.5y = -1.6 \]

\[x + y^2 = 9 \]

\[x = 5 \]
x-intercepts and y-intercepts

Define: \(x\)-intercept:

\(y\)-intercept:

To find the \(x\)-intercept, plug in _________ and solve for _________.

To find the \(y\)-intercept, plug in _________ and solve for _________.

Find the coordinates of the \(x\) and \(y\) intercepts for the following lines:

\[
\begin{align*}
\text{a)} & \quad x - 1.5y = -1.6 \\
\text{b)} & \quad 2x + y = 5 \\
\text{c)} & \quad x = 5 \\
\text{d)} & \quad y = -2
\end{align*}
\]

Do these points match up with the intercepts that you drew on the coordinate plane on the previous page? If they do not, then go back and fix them!

Slope

Define slope:

To find the slope between two points \((x_1, y_1)\) and \((x_2, y_2)\), use this formula:_________________________

A positive slope will go _________ and to the ___________.

A negative slope will go _________ and to the ___________.
A horizontal line (like the example $y = -2$) has a slope of ________________.

A vertical line (like the example $x = 5$) has a slope of ________________.

Parallel lines have _____________ slope, while perpendicular lines have _______________________ slope.

Find the slope of the line between the given points using the slope formula:

(a) $(-1, 5), (2, -3)$

(b) $(-1, -2), (2, 4)$

Find the slope of the line by finding two points on the line and using the slope formula:

(a) $2x + y = 5$

(b) $x - 1.5y = -1.6$

Slope-Intercept Form

What is the slope intercept form of a linear equation?

Why is this useful?

What is the slope of the line written as the answer to question #1?

What are the coordinates of that line’s y-intercept?
Convert the following linear equations to slope intercept form, and then find the slope and y-intercept of each line.

(a) $3x - 4y = 4$
(b) $2x + 10y = 30$

Find a linear equation of the line with a slope of $\frac{1}{4}$ and a y-intercept of $(0,-3)$:

What is the slope of any line parallel to $3x - 4y = 4$?
What is the slope of any line perpendicular to $3x - 4y = 4$?

The Point-Slope Formula

What is the point-slope formula?

Why is this useful?

Find the requested linear equation. Convert all answers to slope-intercept form:

(a) Find the equation of the line with slope 3 that contains the point (-2, -5)

(b) Find the equation of the line parallel to $3x - 4y = 4$ through the point (1,0)

(c) Find the equation of the line perpendicular to $3x - 4y = 4$ through the point (2,-3)